scholarly journals Bidirectional Signaling Links the Abelson Kinases to the Platelet-Derived Growth Factor Receptor

2004 ◽  
Vol 24 (6) ◽  
pp. 2573-2583 ◽  
Author(s):  
Rina Plattner ◽  
Anthony J. Koleske ◽  
Andrius Kazlauskas ◽  
Ann Marie Pendergast

ABSTRACT The c-Abl nonreceptor tyrosine kinase is activated by growth factor signals such as the platelet-derived growth factor (PDGF) and functions downstream of the PDGF-β receptor (PDGFR) to mediate biological processes such as membrane ruffling, mitogenesis, and chemotaxis. Here, we show that the related kinase Arg is activated downstream of PDGFRs in a manner dependent on Src family kinases and phospholipase C γ1 (PLC-γ1)-mediated phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis, as we showed previously for c-Abl. PIP2, a highly abundant phosphoinositide known to regulate cytoskeletal and membrane proteins, inhibits the tyrosine kinase activities of both Arg and c-Abl in vitro and in cells. We now demonstrate that c-Abl and Arg form inducible complexes with and are phosphorylated by the PDGFR tyrosine kinase in vitro and in vivo. Moreover, c-Abl and Arg, in turn, phosphorylate the PDGFR. We show that c-Abl and Arg exhibit nonredundant functions downstream of the activated PDGFR. Reintroduction of c-Abl into Arg-Abl double-null fibroblasts rescues the ability of PLC-γ1 to increase PDGF-mediated chemotaxis, while reexpression of Arg fails to rescue the chemotaxis defect. These data show that, although both kinases are activated and form complexes with proteins in the PDGFR signaling pathway, only c-Abl functions downstream of PLC-γ1 to mediate chemotaxis.

Neoplasia ◽  
2009 ◽  
Vol 11 (8) ◽  
pp. 732-W7 ◽  
Author(s):  
Debora Faraone ◽  
Maria Simona Aguzzi ◽  
Gabriele Toietta ◽  
Angelo M. Facchiano ◽  
Francesco Facchiano ◽  
...  

2008 ◽  
Vol 29 (3) ◽  
pp. 881-891 ◽  
Author(s):  
Anne Moenning ◽  
Richard Jäger ◽  
Angela Egert ◽  
Wolfram Kress ◽  
Eva Wardelmann ◽  
...  

ABSTRACT The development and growth of the skull is controlled by cranial sutures, which serve as growth centers for osteogenesis by providing a pool of osteoprogenitors. These osteoprogenitors undergo intramembranous ossification by direct differentiation into osteoblasts, which synthesize the components of the extracellular bone matrix. A dysregulation of osteoblast differentiation can lead to premature fusion of sutures, resulting in an abnormal skull shape, a disease called craniosynostosis. Although several genes could be linked to craniosynostosis, the mechanisms regulating cranial suture development remain largely elusive. We have established transgenic mice conditionally expressing an autoactivated platelet-derived growth factor receptor α (PDGFRα) in neural crest cells (NCCs) and their derivatives. In these mice, premature fusion of NCC-derived sutures occurred at early postnatal stages. In vivo and in vitro experiments demonstrated enhanced proliferation of osteoprogenitors and accelerated ossification of osteoblasts. Furthermore, in osteoblasts expressing the autoactivated receptor, we detected an upregulation of the phospholipase C-γ (PLC-γ) pathway. Treatment of differentiating osteoblasts with a PLC-γ-specific inhibitor prevented the mineralization of synthesized bone matrix. Thus, we show for the first time that PDGFRα signaling stimulates osteogenesis of NCC-derived osteoblasts by activating the PLC-γ pathway, suggesting an involvement of this pathway in the etiology of human craniosynostosis.


2007 ◽  
Vol 27 (10) ◽  
pp. 2142-2149 ◽  
Author(s):  
Peetra U. Magnusson ◽  
Camilla Looman ◽  
Aive Åhgren ◽  
Yan Wu ◽  
Lena Claesson-Welsh ◽  
...  

2000 ◽  
Vol 20 (22) ◽  
pp. 8352-8363 ◽  
Author(s):  
Stuart Maudsley ◽  
A. Musa Zamah ◽  
Nadeem Rahman ◽  
Jeremy T. Blitzer ◽  
Louis M. Luttrell ◽  
...  

ABSTRACT Platelet-derived growth factor (PDGF) is a potent mitogen for many cell types. The PDGF receptor (PDGFR) is a receptor tyrosine kinase that mediates the mitogenic effects of PDGF by binding to and/or phosphorylating a variety of intracellular signaling proteins upon PDGF-induced receptor dimerization. We show here that the Na+/H+ exchanger regulatory factor (NHERF; also known as EBP50), a protein not previously known to interact with the PDGFR, binds to the PDGFR carboxyl terminus (PDGFR-CT) with high affinity via a PDZ (PSD-95/Dlg/Z0-1 homology) domain-mediated interaction and potentiates PDGFR autophosphorylation and extracellular signal-regulated kinase (ERK) activation in cells. A point-mutated version of the PDGFR, with the terminal leucine changed to alanine (L1106A), cannot bind NHERF in vitro and is markedly impaired relative to the wild-type receptor with regard to PDGF-induced autophosphorylation and activation of ERK in cells. NHERF potentiation of PDGFR signaling depends on the capacity of NHERF to oligomerize. NHERF oligomerizes in vitro when bound with PDGFR-CT, and a truncated version of the first NHERF PDZ domain that can bind PDGFR-CT but which does not oligomerize reduces PDGFR tyrosine kinase activity when transiently overexpressed in cells. PDGFR activity in cells can also be regulated in a NHERF-dependent fashion by stimulation of the β2-adrenergic receptor, a known cellular binding partner for NHERF. These findings reveal that NHERF can directly bind to the PDGFR and potentiate PDGFR activity, thus elucidating both a novel mechanism by which PDGFR activity can be regulated and a new cellular role for the PDZ domain-containing adapter protein NHERF.


2017 ◽  
Vol 26 ◽  
pp. S142
Author(s):  
B. Wang ◽  
J. Liu ◽  
Y. Hua ◽  
L. Huang ◽  
K. Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document