scholarly journals Mlh1 Can Function in Antibody Class Switch Recombination Independently of Msh2

2003 ◽  
Vol 197 (10) ◽  
pp. 1377-1383 ◽  
Author(s):  
Carol E. Schrader ◽  
Joycelyn Vardo ◽  
Janet Stavnezer

Mismatch repair proteins participate in antibody class switch recombination, although their roles are unknown. Previous nucleotide sequence analyses of switch recombination junctions indicated that the roles of Msh2 and the MutL homologues, Mlh1 and Pms2, differ. We now asked if Msh2 and Mlh1 function in the same pathway during switch recombination. Splenic B cells from mice deficient in both these proteins were induced to undergo switching in culture. The frequency of switching is reduced, similarly to that of B cells singly deficient in Msh2 or Mlh1. However, the nucleotide sequences of the Sμ-Sγ3 junctions resemble junctions from Mlh1- but not from Msh2-deficient cells, suggesting Mlh1 functions either independently of or before Msh2. The substitution mutations within S regions that are known to accompany switch recombination are increased in Msh2- and Mlh1 single-deficient cells and further increased in the double-deficient cells, again suggesting these proteins function independently in class switch recombination. The finding that MMR functions to reduce mutations in switch regions is unexpected since MMR proteins have been shown to contribute to somatic hypermutation of antibody variable region genes.

2005 ◽  
Vol 202 (6) ◽  
pp. 733-738 ◽  
Author(s):  
Vasco M. Barreto ◽  
Qiang Pan-Hammarstrom ◽  
Yaofeng Zhao ◽  
Lennart Hammarstrom ◽  
Ziva Misulovin ◽  
...  

Class switch recombination was the last of the lymphocyte-specific DNA modification reactions to appear in the evolution of the adaptive immune system. It is absent in cartilaginous and bony fish, and it is common to all tetrapods. Class switching is initiated by activation-induced cytidine deaminase (AID), an enzyme expressed in cartilaginous and bony fish that is also required for somatic hypermutation. Fish AID differs from orthologs found in tetrapods in several respects, including its catalytic domain and carboxy-terminal region, both of which are essential for the switching reaction. To determine whether evolution of class switch recombination required alterations in AID, we assayed AID from Japanese puffer and zebra fish for class-switching activity in mouse B cells. We find that fish AID catalyzes class switch recombination in mammalian B cells. Thus, AID had the potential to catalyze this reaction before the teleost and tetrapod lineages diverged, suggesting that the later appearance of a class-switching reaction was dependent on the evolution of switch regions and multiple constant regions in the IgH locus.


2008 ◽  
Vol 205 (11) ◽  
pp. 2585-2594 ◽  
Author(s):  
Kevin M. McBride ◽  
Anna Gazumyan ◽  
Eileen M. Woo ◽  
Tanja A. Schwickert ◽  
Brian T. Chait ◽  
...  

Activation-induced cytidine deaminase (AID) is a mutator enzyme that initiates somatic mutation and class switch recombination in B lymphocytes by introducing uracil:guanine mismatches into DNA. Repair pathways process these mismatches to produce point mutations in the Ig variable region or double-stranded DNA breaks in the switch region DNA. However, AID can also produce off-target DNA damage, including mutations in oncogenes. Therefore, stringent regulation of AID is required for maintaining genomic stability during maturation of the antibody response. It has been proposed that AID phosphorylation at serine 38 (S38) regulates its activity, but this has not been tested in vivo. Using a combination of mass spectrometry and immunochemical approaches, we found that in addition to S38, AID is also phosphorylated at position threonine 140 (T140). Mutation of either S38 or T140 to alanine does not impact catalytic activity, but interferes with class switching and somatic hypermutation in vivo. This effect is particularly pronounced in haploinsufficient mice where AID levels are limited. Although S38 is equally important for both processes, T140 phosphorylation preferentially affects somatic mutation, suggesting that posttranslational modification might contribute to the choice between hypermutation and class switching.


2014 ◽  
Vol 211 (6) ◽  
pp. 1011-1018 ◽  
Author(s):  
Thuy Vy Nguyen ◽  
Lydia Riou ◽  
Saïd Aoufouchi ◽  
Filippo Rosselli

Fanconi anemia is a rare genetic disorder that can lead to bone marrow failure, congenital abnormalities, and increased risk for leukemia and cancer. Cells with loss-of-function mutations in the FANC pathway are characterized by chromosome fragility, altered mutability, and abnormal regulation of the nonhomologous end-joining (NHEJ) pathway. Somatic hypermutation (SHM) and immunoglobulin (Ig) class switch recombination (CSR) enable B cells to produce high-affinity antibodies of various isotypes. Both processes are initiated after the generation of dG:dU mismatches by activation-induced cytidine deaminase. Whereas SHM involves an error-prone repair process that introduces novel point mutations into the Ig gene, the mismatches generated during CSR are processed to create double-stranded breaks (DSBs) in DNA, which are then repaired by the NHEJ pathway. As several lines of evidence suggest a possible role for the FANC pathway in SHM and CSR, we analyzed both processes in B cells derived from Fanca−/− mice. Here we show that Fanca is required for the induction of transition mutations at A/T residues during SHM and that despite globally normal CSR function in splenic B cells, Fanca is required during CSR to stabilize duplexes between pairs of short microhomology regions, thereby impeding short-range recombination downstream of DSB formation.


Blood ◽  
2008 ◽  
Vol 111 (3) ◽  
pp. 1448-1455 ◽  
Author(s):  
Julia Rastelli ◽  
Cornelia Hömig-Hölzel ◽  
Jane Seagal ◽  
Werner Müller ◽  
Andrea C. Hermann ◽  
...  

AbstractThe Epstein-Barr virus (EBV) protein LMP1 is considered to be a functional homologue of the CD40 receptor. However, in contrast to the latter, LMP1 is a constitutively active signaling molecule. To compare B cell–specific LMP1 and CD40 signaling in an unambiguous manner, we generated transgenic mice conditionally expressing a CD40/LMP1 fusion protein, which retained the LMP1 cytoplasmic tail but has lost the constitutive activity of LMP1 and needs to be activated by the CD40 ligand. We show that LMP1 signaling can completely substitute CD40 signaling in B cells, leading to normal B-cell development, activation, and immune responses including class-switch recombination, germinal center formation, and somatic hypermutation. In addition, the LMP1-signaling domain has a unique property in that it can induce class-switch recombination to IgG1 independent of cytokines. Thus, our data indicate that LMP1 has evolved to imitate T-helper cell function allowing activation, proliferation, and differentiation of EBV-infected B cells independent of T cells.


2003 ◽  
Vol 197 (12) ◽  
pp. 1767-1778 ◽  
Author(s):  
Bernardo Reina-San-Martin ◽  
Simone Difilippantonio ◽  
Leif Hanitsch ◽  
Revati F. Masilamani ◽  
André Nussenzweig ◽  
...  

Changes in chromatin structure induced by posttranslational modifications of histones are important regulators of genomic function. Phosphorylation of histone H2AX promotes DNA repair and helps maintain genomic stability. Although B cells lacking H2AX show impaired class switch recombination (CSR), the precise role of H2AX in CSR and somatic hypermutation (SHM) has not been defined. We show that H2AX is not required for SHM, suggesting that the processing of DNA lesions leading to SHM is fundamentally different from CSR. Impaired CSR in H2AX−/− B cells is not due to alterations in switch region transcription, accessibility, or aberrant joining. In the absence of H2AX, short-range intra-switch region recombination proceeds normally while long-range inter-switch region recombination is impaired. Our results suggest a role for H2AX in regulating the higher order chromatin remodeling that facilitates switch region synapsis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhangguo Chen ◽  
Jing H. Wang

Mature B cells express B cell antigen receptor (BCR), toll-like receptors (TLR) and TNF family receptors including CD40 and B-cell activating factor receptor (BAFFR). These receptors transduce cellular signals to govern the physiological and pathological processes in B cells including B cell development and differentiation, survival, proliferation, and antibody-mediated immune responses as well as autoimmune diseases and B cell lymphomagenesis. Effective antibody-mediated immune responses require class switch recombination (CSR), a somatic DNA recombination event occurring at the immunoglobulin heavy chain (Igh) gene locus. Mature B cells initially express IgM as their BCR, and CSR enables the B cells to switch from expressing IgM to expressing different classes of antibodies including IgG, IgA or IgE that exhibit distinct effector functions. Here, we briefly review recent findings about how the signaling crosstalk of the BCR with TLRs, CD40 and BAFFR regulates CSR, antibody-mediate immune responses, and B cell anergy.


2018 ◽  
Author(s):  
Helena Kuri-Magaña ◽  
Leonardo Collado-Torres ◽  
Andrew E. Jaffe ◽  
Humberto Valdovinos-Torres ◽  
Marbella Ovilla-Muñoz ◽  
...  

AbstractBackgroundAntibody class switch recombination (CSR) to IgG, IgA or IgE is a hallmark of adaptive immunity, allowing antibody function diversification beyond IgM. CSR involves a deletion of the IgM/IgD constant region genes placing a new acceptor Constant (CH) gene, downstream of the VDJH exon. CSR depends on non-coding (CSRnc) transcription of donor Iμ and acceptor IH exons, located 5’ upstream of each CH coding gene. Although our knowledge of the role of CSRnc transcription has advanced greatly, its extension and importance in healthy and diseased humans is scarce.MethodsWe analyzed CSRnc transcription in 70,603 publicly available RNA-seq samples, including GTEx, TCGA and the Sequence Read Archive (SRA) using recount2, an online resource consisting of normalized RNA-seq gene and exon counts, as well as coverage BigWig files that can be programmatically accessed through R. CSRnc transcription was validated with a qRT-PCR assay for Iμ, Iγ3 and Iγ1 in humans in response to vaccination.ResultsWe mapped IH transcription for the human IgH locus, including the less understood IGHD gene. CSRnc transcription was restricted to B cells and is widely distributed in normal adult tissues, but predominant in blood, spleen, MALT-containing tissues, visceral adipose tissue and some so-called “immune privileged” tissues. However, significant Iγ4 expression was found even in non-lymphoid fetal tissues. CSRnc expression in cancer tissues mimicked the expression of their normal counterparts, with notable pattern changes in some common cancer subsets. CSRnc transcription in tumors appears to result from tumor infiltration by B cells, since CSRnc transcription was not detected in corresponding tumor-derived immortal cell lines. Additionally, significantly increased I5 transcription in ileal mucosa in Crohn’s disease with ulceration was found.ConclusionsCSRnc transcription occurs in multiple anatomical locations beyond classical secondary lymphoid organs, representing a potentially useful marker of effector B cell responses in normal and pathological immune responses. The pattern of IH exon expression may reveal clues of the local immune response (i.e. cytokine milieu) in health and disease. This is a great example of how the public recount2 data can be used to further our understanding of transcription, including regions outside the known transcriptome.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. e1009288
Author(s):  
Sandrine Le Noir ◽  
Amélie Bonaud ◽  
Bastien Hervé ◽  
Audrey Baylet ◽  
François Boyer ◽  
...  

DNA lesions inflicted by activation-induced deaminase (AID) instrumentally initiate the processes reshaping immunoglobulin genes in mature B-cells, from local somatic hypermutation (SHM) to junctions of distant breaks during class switch recombination (CSR). It remains incompletely understood how these divergent outcomes of AID attacks are differentially and temporally focused, with CSR strictly occurring in the Ig heavy chain (IgH) locus while SHM concentrates on rearranged V(D)J regions in the IgH and Ig light chain loci. In the IgH locus, disruption of either the 3’Regulatory Region (3’RR) super-enhancer or of switch (S) regions preceding constant genes, profoundly affects CSR. Reciprocally, we now examined if these elements are sufficient to induce CSR in a synthetic locus based on the Igκ locus backbone. Addition of a surrogate “core 3’RR” (c3’RR) and of a pair of transcribed and spliced Switch regions, together with a reporter system for “κ-CSR” yielded a switchable Igκ locus. While the c3’RR stimulated SHM at S regions, it also lowered the local SHM threshold necessary for switch recombination to occur. The 3’RR thus both helps recruit AID to initiate DNA lesions, but then also promotes their resolution through long-distance synapses and recombination following double-strand breaks.


Blood ◽  
2003 ◽  
Vol 102 (4) ◽  
pp. 1421-1427 ◽  
Author(s):  
Caroline Le Morvan ◽  
Eric Pinaud ◽  
Catherine Decourt ◽  
Armelle Cuvillier ◽  
Michel Cogné

Abstract The more distal enhancers of the immunoglobulin heavy-chain 3′ regulatory region, hs3b and hs4, were recently demonstrated as master control elements of germline transcription and class switch recombination to most immunoglobulin constant genes. In addition, they were shown to enhance the accumulation of somatic mutations on linked transgenes. Since somatic hypermutation and class switch recombination are tightly linked processes, their common dependency on the endogenous locus 3′ enhancers could be an attractive hypothesis. VDJ structure and somatic hypermutation were analyzed in B cells from mice carrying either a heterozygous or a homozygous deletion of these enhancers. We find that hs3b and hs4 are dispensable both for VDJ assembly and for the occurrence of mutations at a physiologic frequency in the endogenous locus. In addition, we show that cells functionally expressing the immunoglobulin M (IgM) class B-cell receptor encoded by an hs3b/hs4-deficient locus were fully able to enter germinal centers, undergo affinity maturation, and yield specific antibody responses in homozygous mutant mice, where IgG1 antibodies compensated for the defect in other IgG isotypes. By contrast, analysis of Peyer patches from heterozygous animals showed that peanut agglutinin (PNAhigh) B cells functionally expressing the hs3b/hs4-deficient allele were dramatically outclassed by B cells expressing the wild-type locus and normally switching to IgA. This study thus also highlights the role of germinal centers in the competition between B cells for affinity maturation and suggests that membrane IgA may promote recruitment in an activated B-cell compartment, or proliferation of activated B cells, more efficiently than IgM in Peyer patches.


Sign in / Sign up

Export Citation Format

Share Document