scholarly journals Immunoglobulin Class Switch Recombination Is Initiated by Rare Cytosine Deamination Events at Switch Regions

2020 ◽  
Vol 40 (16) ◽  
Author(s):  
Ahrom Kim ◽  
Li Han ◽  
Kefei Yu

ABSTRACT Activation-induced cytidine deaminase (AID) initiates immunoglobulin (Ig) class switch recombination (CSR), somatic hypermutation (SHM), and gene conversion by converting DNA cytosines to uracils at specific genomic regions. In this study, we examined AID footprints across the entire length of an engineered switch region in cells ablated for uracil repair. We found that AID deamination occurs predominantly at WRC hot spots (where W is A or T and R is A or G) and that the deamination frequency remains constant across the entire switch region. Importantly, we analyzed monoallelic AID deamination footprints on both DNA strands occurring within a single cell cycle. We found that AID generates few and mostly isolated uracils in the switch region, although processive AID deaminations are evident in some molecules. The frequency of molecules containing deamination on both DNA strands at the acceptor switch region correlates with the class switch efficiency, raising the possibility that the minimal requirement for DNA double-strand break (DSB) formation is as low as even one AID deamination event on both DNA strands.

2005 ◽  
Vol 202 (6) ◽  
pp. 733-738 ◽  
Author(s):  
Vasco M. Barreto ◽  
Qiang Pan-Hammarstrom ◽  
Yaofeng Zhao ◽  
Lennart Hammarstrom ◽  
Ziva Misulovin ◽  
...  

Class switch recombination was the last of the lymphocyte-specific DNA modification reactions to appear in the evolution of the adaptive immune system. It is absent in cartilaginous and bony fish, and it is common to all tetrapods. Class switching is initiated by activation-induced cytidine deaminase (AID), an enzyme expressed in cartilaginous and bony fish that is also required for somatic hypermutation. Fish AID differs from orthologs found in tetrapods in several respects, including its catalytic domain and carboxy-terminal region, both of which are essential for the switching reaction. To determine whether evolution of class switch recombination required alterations in AID, we assayed AID from Japanese puffer and zebra fish for class-switching activity in mouse B cells. We find that fish AID catalyzes class switch recombination in mammalian B cells. Thus, AID had the potential to catalyze this reaction before the teleost and tetrapod lineages diverged, suggesting that the later appearance of a class-switching reaction was dependent on the evolution of switch regions and multiple constant regions in the IgH locus.


2005 ◽  
Vol 25 (5) ◽  
pp. 1730-1736 ◽  
Author(s):  
Kefei Yu ◽  
Deepankar Roy ◽  
Melina Bayramyan ◽  
Ian S. Haworth ◽  
Michael R. Lieber

ABSTRACT Activation-induced deaminase (AID) is essential for class switch recombination and somatic hypermutation, and it has the ability to deaminate single-stranded DNA at cytidines. Mammalian class switch regions form R-loops upon transcription in the physiological orientation. The displaced DNA strand of an R-loop is forced to wrap around the RNA-DNA hybrid; hence, it may not have complete exposure to proteins. A fundamental question concerns the extent to which AID is accessible to the displaced strand of a transcription-generated R-loop. We used a minimal R-loop to carry out high-resolution analysis of the precise locations of AID action. We found that AID deaminates on the displaced DNA strand across the entire length of the R-loop. Displaced strand locations with a WRC (where W is A or T and R is A or G) sequence are preferred targets, but there are clear exceptions. These WRC deviations may be due to steric constraints on the accessibility of AID to these sites as the displaced strand twists around the RNA-DNA duplex. This phenomenon may explain the lack of WRC site preference at the mutations surrounding class switch recombination junctions.


2008 ◽  
Vol 205 (11) ◽  
pp. 2465-2472 ◽  
Author(s):  
Sophie Péron ◽  
Ayse Metin ◽  
Pauline Gardès ◽  
Marie-Alexandra Alyanakian ◽  
Eamonn Sheridan ◽  
...  

Immunoglobulin (Ig) class switch recombination (CSR) deficiencies are rare primary immunodeficiencies characterized by the lack of switched isotype (IgG/IgA/IgE) production. In some cases, CSR deficiencies can be associated with abnormal somatic hypermutation. Analysis of CSR deficiencies has helped reveal the key functions of CSR-triggering molecules, i.e., CD40L, CD40, and effector molecules such as activation-induced cytidine deaminase and uracil N-glycosylase. We report a new form of B cell–intrinsic CSR deficiency found in three patients with deleterious, homozygous mutations in the gene encoding the PMS2 component of the mismatch repair machinery. CSR was found partially defective in vivo and markedly impaired in vitro. It is characterized by the defective occurrence of double-strand DNA breaks (DSBs) in switch regions and abnormal formation of switch junctions. This observation strongly suggests a role for PMS2 in CSR-induced DSB generation.


2004 ◽  
Vol 200 (9) ◽  
pp. 1103-1110 ◽  
Author(s):  
Bernardo Reina-San-Martin ◽  
Hua Tang Chen ◽  
André Nussenzweig ◽  
Michel C. Nussenzweig

Ataxia telangiectasia mutated (ATM) kinase is critical for initiating the signaling pathways that lead to cell cycle checkpoints and DNA double strand break repair. In the absence of ATM, humans and mice show a primary immunodeficiency that includes low serum antibody titers, but the role of ATM in antigen-driven immunoglobulin gene diversification has not been defined. Here, we show that although ATM is dispensable for somatic hypermutation, it is required for efficient class switch recombination (CSR). The defect in CSR is not due to alterations in switch region transcription, accessibility, DNA damage checkpoint protein recruitment, or short-range intra-switch region recombination. Only long-range inter-switch recombination is defective, indicating an unexpected role for ATM in switch region synapsis during CSR.


2011 ◽  
Vol 208 (8) ◽  
pp. 1649-1660 ◽  
Author(s):  
Beena Patricia Jeevan-Raj ◽  
Isabelle Robert ◽  
Vincent Heyer ◽  
Adeline Page ◽  
Jing H. Wang ◽  
...  

Immunoglobulin class switch recombination (CSR) is initiated by double-stranded DNA breaks (DSBs) in switch regions triggered by activation-induced cytidine deaminase (AID). Although CSR correlates with epigenetic modifications at the IgH locus, the relationship between these modifications and AID remains unknown. In this study, we show that during CSR, AID forms a complex with KAP1 (KRAB domain–associated protein 1) and HP1 (heterochromatin protein 1) that is tethered to the donor switch region (Sμ) bearing H3K9me3 (trimethylated histone H3 at lysine 9) in vivo. Furthermore, in vivo disruption of this complex results in impaired AID recruitment to Sμ, inefficient DSB formation, and a concomitant defect in CSR but not in somatic hypermutation. We propose that KAP1 and HP1 tether AID to H3K9me3 residues at the donor switch region, thus providing a mechanism linking AID to epigenetic modifications during CSR.


2004 ◽  
Vol 199 (2) ◽  
pp. 265-270 ◽  
Author(s):  
Ahmad Faili ◽  
Said Aoufouchi ◽  
Sandra Weller ◽  
Françoise Vuillier ◽  
Anne Stary ◽  
...  

Base substitutions, deletions, and duplications are observed at the immunoglobulin locus in DNA sequences involved in class switch recombination (CSR). These mutations are dependent upon activation-induced cytidine deaminase (AID) and present all the characteristics of the ones observed during V gene somatic hypermutation, implying that they could be generated by the same mutational complex. It has been proposed, based on the V gene mutation pattern of patients with the cancer-prone xeroderma pigmentosum variant (XP-V) syndrome who are deficient in DNA polymerase η (pol η), that this enzyme could be responsible for a large part of the mutations occurring on A/T bases. Here we show, by analyzing switched memory B cells from two XP-V patients, that pol η is also an A/T mutator during CSR, in both the switch region of tandem repeats as well as upstream of it, thus suggesting that the same error-prone translesional polymerases are involved, together with AID, in both processes.


2008 ◽  
Vol 205 (11) ◽  
pp. 2585-2594 ◽  
Author(s):  
Kevin M. McBride ◽  
Anna Gazumyan ◽  
Eileen M. Woo ◽  
Tanja A. Schwickert ◽  
Brian T. Chait ◽  
...  

Activation-induced cytidine deaminase (AID) is a mutator enzyme that initiates somatic mutation and class switch recombination in B lymphocytes by introducing uracil:guanine mismatches into DNA. Repair pathways process these mismatches to produce point mutations in the Ig variable region or double-stranded DNA breaks in the switch region DNA. However, AID can also produce off-target DNA damage, including mutations in oncogenes. Therefore, stringent regulation of AID is required for maintaining genomic stability during maturation of the antibody response. It has been proposed that AID phosphorylation at serine 38 (S38) regulates its activity, but this has not been tested in vivo. Using a combination of mass spectrometry and immunochemical approaches, we found that in addition to S38, AID is also phosphorylated at position threonine 140 (T140). Mutation of either S38 or T140 to alanine does not impact catalytic activity, but interferes with class switching and somatic hypermutation in vivo. This effect is particularly pronounced in haploinsufficient mice where AID levels are limited. Although S38 is equally important for both processes, T140 phosphorylation preferentially affects somatic mutation, suggesting that posttranslational modification might contribute to the choice between hypermutation and class switching.


2013 ◽  
Vol 210 (12) ◽  
pp. 2495-2502 ◽  
Author(s):  
Anne-Sophie Thomas-Claudepierre ◽  
Ebe Schiavo ◽  
Vincent Heyer ◽  
Marjorie Fournier ◽  
Adeline Page ◽  
...  

Immunoglobulin (Ig) class switch recombination (CSR) is initiated by the transcription-coupled recruitment of activation-induced cytidine deaminase (AID) to switch regions and by the subsequent generation of double-stranded DNA breaks (DSBs). These DNA breaks are ultimately resolved through the nonhomologous end joining (NHEJ) pathway. We show that during CSR, AID associates with subunits of cohesin, a complex previously implicated in sister chromatid cohesion, DNA repair, and the formation of DNA loops between enhancers and promoters. Furthermore, we implicate the cohesin complex in the mechanism of CSR by showing that cohesin is dynamically recruited to the Sμ-Cμ region of the IgH locus during CSR and that knockdown of cohesin or its regulatory subunits results in impaired CSR and increased usage of microhomology-based end joining.


2003 ◽  
Vol 197 (12) ◽  
pp. 1767-1778 ◽  
Author(s):  
Bernardo Reina-San-Martin ◽  
Simone Difilippantonio ◽  
Leif Hanitsch ◽  
Revati F. Masilamani ◽  
André Nussenzweig ◽  
...  

Changes in chromatin structure induced by posttranslational modifications of histones are important regulators of genomic function. Phosphorylation of histone H2AX promotes DNA repair and helps maintain genomic stability. Although B cells lacking H2AX show impaired class switch recombination (CSR), the precise role of H2AX in CSR and somatic hypermutation (SHM) has not been defined. We show that H2AX is not required for SHM, suggesting that the processing of DNA lesions leading to SHM is fundamentally different from CSR. Impaired CSR in H2AX−/− B cells is not due to alterations in switch region transcription, accessibility, or aberrant joining. In the absence of H2AX, short-range intra-switch region recombination proceeds normally while long-range inter-switch region recombination is impaired. Our results suggest a role for H2AX in regulating the higher order chromatin remodeling that facilitates switch region synapsis.


Blood ◽  
2006 ◽  
Vol 109 (1) ◽  
pp. 159-167 ◽  
Author(s):  
Jurga Laurencikiene ◽  
Vytas Tamosiunas ◽  
Eva Severinson

Abstract Germline (GL) transcription is regulated by specific promoters and immunoglobulin heavy chain (IgH) 3′ locus enhancers and is necessary for Ig class-switch recombination (CSR). We have generated different transgenic lines containing the GL ϵ promoter, switch (S) ϵ region, and constant (C) ϵ region with or without the DNase I–sensitive regions (HS) 3A-HS1,2 or HS3B-HS4 3′ IgH enhancer pairs. The enhancerless construct was expressed in B cells activated by interleukin (IL)–4 and CD40, thus resembling regulation of the endogenous gene. Both enhancer-containing transgenes efficiently increased expression in B cells and were strongly up-regulated by stimuli. In addition, Sϵ regions of the transgene containing HS3B-HS4 were mutated in activated, sorted B cells. Such mutations are known to precede CSR and are dependent on activation-induced cytidine deaminase (AID). Our findings show that all elements necessary for recruitment of the recombination machinery are present in the transgene containing HS3 and HS4. These enhancers probably provide something more specific than mere increased accessibility of switch regions. We propose that transcription factors binding the enhancers help to target the recombination machinery to the switch regions.


Sign in / Sign up

Export Citation Format

Share Document