scholarly journals The secreted form of invertase in Saccharomyces cerevisiae is synthesized from mRNA encoding a signal sequence.

1983 ◽  
Vol 3 (3) ◽  
pp. 439-447 ◽  
Author(s):  
M Carlson ◽  
R Taussig ◽  
S Kustu ◽  
D Botstein

The SUC2 gene of Saccharomyces cerevisiae encodes two differently regulated mRNAs (1.8 and 1.9 kilobases) that differ at their 5' ends. The larger RNA encodes a secreted, glycosylated form of invertase and the smaller RNA encodes an intracellular, nonglycosylated form. We have determined the nucleotide sequence of the amino-terminal coding region of the SUC2 gene and its upstream flanking region and have mapped the 5' ends of the SUC2 mRNAs relative to the DNA sequence. The 1.9-kilobase RNA contains a signal peptide coding sequence and presumably encodes a precursor to secreted invertase. The 1.8-kilobase RNA does not include the complete coding sequence for the signal peptide. The nucleotide sequence data prove that SUC2 is a structural gene for invertase, and translation of the coding information provides the complete amino acid sequence of an S. cerevisiae signal peptide.

1983 ◽  
Vol 3 (3) ◽  
pp. 439-447
Author(s):  
M Carlson ◽  
R Taussig ◽  
S Kustu ◽  
D Botstein

The SUC2 gene of Saccharomyces cerevisiae encodes two differently regulated mRNAs (1.8 and 1.9 kilobases) that differ at their 5' ends. The larger RNA encodes a secreted, glycosylated form of invertase and the smaller RNA encodes an intracellular, nonglycosylated form. We have determined the nucleotide sequence of the amino-terminal coding region of the SUC2 gene and its upstream flanking region and have mapped the 5' ends of the SUC2 mRNAs relative to the DNA sequence. The 1.9-kilobase RNA contains a signal peptide coding sequence and presumably encodes a precursor to secreted invertase. The 1.8-kilobase RNA does not include the complete coding sequence for the signal peptide. The nucleotide sequence data prove that SUC2 is a structural gene for invertase, and translation of the coding information provides the complete amino acid sequence of an S. cerevisiae signal peptide.


1987 ◽  
Vol 7 (1) ◽  
pp. 121-128 ◽  
Author(s):  
J H Cramer ◽  
K Lea ◽  
M D Schaber ◽  
R A Kramer

We linked the cDNA coding region for the bean storage protein phaseolin to the promoter and regulatory region of the Saccharomyces cerevisiae repressible acid phosphatase gene (PHO5) in multicopy expression plasmids. Yeast transformants containing these plasmids expressed phaseolin at levels up to 3% of the total soluble cellular protein. Phaseolin polypeptides in S. cerevisiae were glycosylated, and their molecular weights suggested that the signal peptide had been processed. We also constructed a series of plasmids in which the phaseolin signal-peptide-coding region was either removed or replaced with increasing amounts of the amino-terminal coding region for acid phosphatase. Phaseolin polypeptides with no signal peptide were not posttranslationally modified in S. cerevisiae. Partial or complete substitution of the phaseolin signal peptide with that from acid phosphatase dramatically inhibited both signal peptide processing and glycosylation, suggesting that some specific feature of the phaseolin signal amino acid sequence was required for these modifications to occur. Larger hybrid proteins that included approximately one-half of the acid phosphatase sequence linked to the amino terminus of the mature phaseolin polypeptide did undergo proteolytic processing and glycosylation. However, these polypeptides were cleaved at several sites that are not normally used in the unaltered acid phosphatase protein.


1987 ◽  
Vol 7 (1) ◽  
pp. 121-128
Author(s):  
J H Cramer ◽  
K Lea ◽  
M D Schaber ◽  
R A Kramer

We linked the cDNA coding region for the bean storage protein phaseolin to the promoter and regulatory region of the Saccharomyces cerevisiae repressible acid phosphatase gene (PHO5) in multicopy expression plasmids. Yeast transformants containing these plasmids expressed phaseolin at levels up to 3% of the total soluble cellular protein. Phaseolin polypeptides in S. cerevisiae were glycosylated, and their molecular weights suggested that the signal peptide had been processed. We also constructed a series of plasmids in which the phaseolin signal-peptide-coding region was either removed or replaced with increasing amounts of the amino-terminal coding region for acid phosphatase. Phaseolin polypeptides with no signal peptide were not posttranslationally modified in S. cerevisiae. Partial or complete substitution of the phaseolin signal peptide with that from acid phosphatase dramatically inhibited both signal peptide processing and glycosylation, suggesting that some specific feature of the phaseolin signal amino acid sequence was required for these modifications to occur. Larger hybrid proteins that included approximately one-half of the acid phosphatase sequence linked to the amino terminus of the mature phaseolin polypeptide did undergo proteolytic processing and glycosylation. However, these polypeptides were cleaved at several sites that are not normally used in the unaltered acid phosphatase protein.


1991 ◽  
Vol 11 (11) ◽  
pp. 5639-5647 ◽  
Author(s):  
L S Rosenblum-Vos ◽  
L Rhodes ◽  
C C Evangelista ◽  
K A Boayke ◽  
R S Zitomer

The ROX3 gene was identified during a hunt for mutants with increased expression of the heme-regulated CYC7 gene, which encodes the minor species of cytochrome c in the yeast Saccharomyces cerevisiae. The rox3 mutants caused a 10-fold increase in CYC7 expression both in the presence and absence of heme, had slightly increased anaerobic expression of the heme-activated CYC1 gene, and caused decreases in the anaerobic expression of the heme-repressed ANB1 gene and the aerobic expression of its heme-induced homolog. The wild-type ROX3 gene was cloned, and the sequence indicated that it encodes a 220-amino-acid protein. This protein is essential; deletion of the coding sequence was lethal. The coding sequence for beta-galactosidase was fused to the 3' end of the ROX3 coding sequence, and the fusion product was found to be localized in the nucleus, strongly suggesting that the wild-type protein carries out a nuclear function. Mutations in the rox3 gene showed an interesting pattern of intragenic complementation. A deletion of the 5' coding region complemented a nonsense mutation at codon 128 but could not prevent the lethality of the null mutation. These results suggest that the amino-terminal domain is required for an essential function, while the carboxy-terminal domain can be supplied in trans to achieve the wild-type expression of CYC7. Finally, RNA blots demonstrated that the ROX3 mRNA was expressed at higher levels anaerobically but was not subject to heme repression. The nuclear localization and the lack of viability of null mutants suggest that the ROX3 protein is a general regulatory factor.


1991 ◽  
Vol 11 (11) ◽  
pp. 5639-5647
Author(s):  
L S Rosenblum-Vos ◽  
L Rhodes ◽  
C C Evangelista ◽  
K A Boayke ◽  
R S Zitomer

The ROX3 gene was identified during a hunt for mutants with increased expression of the heme-regulated CYC7 gene, which encodes the minor species of cytochrome c in the yeast Saccharomyces cerevisiae. The rox3 mutants caused a 10-fold increase in CYC7 expression both in the presence and absence of heme, had slightly increased anaerobic expression of the heme-activated CYC1 gene, and caused decreases in the anaerobic expression of the heme-repressed ANB1 gene and the aerobic expression of its heme-induced homolog. The wild-type ROX3 gene was cloned, and the sequence indicated that it encodes a 220-amino-acid protein. This protein is essential; deletion of the coding sequence was lethal. The coding sequence for beta-galactosidase was fused to the 3' end of the ROX3 coding sequence, and the fusion product was found to be localized in the nucleus, strongly suggesting that the wild-type protein carries out a nuclear function. Mutations in the rox3 gene showed an interesting pattern of intragenic complementation. A deletion of the 5' coding region complemented a nonsense mutation at codon 128 but could not prevent the lethality of the null mutation. These results suggest that the amino-terminal domain is required for an essential function, while the carboxy-terminal domain can be supplied in trans to achieve the wild-type expression of CYC7. Finally, RNA blots demonstrated that the ROX3 mRNA was expressed at higher levels anaerobically but was not subject to heme repression. The nuclear localization and the lack of viability of null mutants suggest that the ROX3 protein is a general regulatory factor.


Genetics ◽  
1998 ◽  
Vol 149 (3) ◽  
pp. 1277-1292 ◽  
Author(s):  
Rajesh R Naik ◽  
Elizabeth W Jones

Abstract The vacuolar hydrolase protease B in Saccharomyces cerevisiae is synthesized as an inactive precursor (Prb1p). The precursor undergoes post-translational modifications while transiting the secretory pathway. In addition to N- and O -linked glycosylations, four proteolytic cleavages occur during the maturation of Prb1p. Removal of the signal peptide by signal peptidase and the autocatalytic cleavage of the large aminoterminal propeptide occur in the endoplasmic reticulum (ER). Two carboxy-terminal cleavages of the post regions occur in the vacuole: the first cleavage is catalyzed by protease A and the second results from autocatalysis. We have isolated a mutant, pbn1-1, that exhibits a defect in the ER processing of Prb1p. The autocatalytic cleavage of the propeptide from Prb1p does not occur and Prb1p is rapidly degraded in the cytosol. PBN1 was cloned and is identical to YCL052c on chromosome III. PBN1 is an essential gene that encodes a novel protein. Pbn1p is predicted to contain a sub-C-terminal transmembrane domain but no signal sequence. A functional HA epitope-tagged Pbn1p fusion localizes to the ER. Pbn1p is N-glycosylated in its amino-terminal domain, indicating a lumenal orientation despite the lack of a signal sequence. Based on these results, we propose that one of the functions of Pbn1p is to aid in the autocatalytic processing of Prb1p.


Sign in / Sign up

Export Citation Format

Share Document