signal peptidase
Recently Published Documents


TOTAL DOCUMENTS

483
(FIVE YEARS 40)

H-INDEX

60
(FIVE YEARS 2)

2022 ◽  
Vol 23 (2) ◽  
pp. 875
Author(s):  
Pontus Öhlund ◽  
Nicolas Delhomme ◽  
Juliette Hayer ◽  
Jenny C. Hesson ◽  
Anne-Lie Blomström

Understanding the flavivirus infection process in mosquito hosts is important and fundamental in the search for novel control strategies that target the mosquitoes’ ability to carry and transmit pathogenic arboviruses. A group of viruses known as insect-specific viruses (ISVs) has been shown to interfere with the infection and replication of a secondary arbovirus infection in mosquitoes and mosquito-derived cell lines. However, the molecular mechanisms behind this interference are unknown. Therefore, in the present study, we infected the Aedes albopictus cell line U4.4 with either the West Nile virus (WNV), the insect-specific Lammi virus (LamV) or an infection scheme whereby cells were pre-infected with LamV 24 h prior to WNV challenge. The qPCR analysis showed that the dual-infected U4.4 cells had a reduced number of WNV RNA copies compared to WNV-only infected cells. The transcriptome profiles of the different infection groups showed a variety of genes with altered expression. WNV-infected cells had an up-regulation of a broad range of immune-related genes, while in LamV-infected cells, many genes related to stress, such as different heat-shock proteins, were up-regulated. The transcriptome profile of the dual-infected cells was a mix of up- and down-regulated genes triggered by both viruses. Furthermore, we observed an up-regulation of signal peptidase complex (SPC) proteins in all infection groups. These SPC proteins have shown importance for flavivirus assembly and secretion and could be potential targets for gene modification in strategies for the interruption of flavivirus transmission by mosquitoes.


Fine Focus ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 9-24
Author(s):  
James C. Kuldell ◽  
Harshani Luknauth ◽  
Anthony E. Ricigliano ◽  
Nathan W. Rigel

The outer membrane is the defining characteristic of Gram-negative bacteria and is crucial for the maintenance of cellular integrity. Lipoproteins are an essential component of this outer membrane and regulate broad cellular functions ranging from efflux, cellular physiology, antibiotic resistance, and pathogenicity. In the canonical model of lipoprotein biogenesis, lipoprotein precursors are first synthesized in the cytoplasm prior to extensive modifications by the consecutive action of three key enzymes: diacylglyceryl transferase (Lgt), lipoprotein signal peptidase A (LspA), and apolipoprotein N-acyltransferase (Lnt). This enzymatic process modifies lipoprotein precursors for subsequent trafficking by the Lol pathway. The function of these three enzymes were originally thought to be essential, however, in some Gram-negative bacteria, namely Acinetobacter baylyi, the third enzyme Lnt is dispensable. Here we review the function and significance of Lgt, LspA, and Lnt in outer membrane biogenesis and how non-canonical models of lipoprotein processing in Acinetobacter spp. can enhance our understanding of lipoprotein modifications and trafficking.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Young-Gyu Eun ◽  
Jung-Woo Lee ◽  
Seung Woo Kim ◽  
Dong-Wook Hyun ◽  
Jin-Woo Bae ◽  
...  

AbstractOral microbiota can alter cancer susceptibility and progression by modulating metabolism and inflammation. We assessed the association between the oral microbiome and lymph node (LN) metastasis in oral squamous cell carcinoma (OSCC). We collected a total of 54 saliva samples from patients with OSCC before surgery. LN metastasis was assessed based on postoperative pathological examination. We used QIIME2, linear discriminant analysis effect size (LEfSe), and PICRUSt2 methods to analyze microbial dysbiosis. A random forest classifier was used to assess whether the oral microbiome could predict LN metastasis. Among the 54 OSCC samples, 20 had LN metastasis, and 34 had no evidence of metastasis. There was a significant difference in β-diversity between the metastasis and no metastasis groups. Through LEfSe analysis, the metastasis group was enriched in the genera Prevotella, Stomatobaculum, Bifidobacterium, Peptostreptococcaceae, Shuttleworthia and Finegoldia. Pathways related to signal peptidase II were predominant in the no metastasis group. The RF model showed a modestly high accuracy for predicting metastasis. Differences in microbial community composition and functions were observed in the oral microbiome of patients with OSCC with and without LN metastasis. However, the finding that specific taxa may be associated with LN metastasis should be verified in a further prospective study.


2021 ◽  
Vol 9 (11) ◽  
pp. 2386
Author(s):  
Servane Payen ◽  
David Roy ◽  
Anaïs Boa ◽  
Masatoshi Okura ◽  
Jean-Philippe Auger ◽  
...  

Streptococcus suis serotype 2 is an important porcine bacterial pathogen associated with multiple pathologies in piglets. Bacterial lipoproteins (LPPs) have been described as playing important roles in the pathogenesis of the infection of other Gram-positive bacteria as adhesins, pro-inflammatory cell activators and/or virulence factors. In the current study, we aimed to evaluate the role of the prolipoprotein diacylglyceryl transferase (Lgt) and lipoprotein signal peptidase (Lsp) enzymes, which are responsible for LPP maturation, on the pathogenesis of the infection caused by two different sequence types (STs) of S. suis serotype 2 strains (virulent ST1 and highly virulent ST7). Through the use of isogenic Δlgt, Δlsp and double Δlgt/Δlsp mutants, it was shown that lack of these enzymes did not influence S. suis adhesion/invasion to porcine respiratory epithelial cells. However, in the absence of the Lsp and/or Lgt, a significant reduction in the capacity of S. suis to activate phagocytic cells and induce pro-inflammatory mediators (in vitro and in vivo) was observed. In general, results obtained with the double mutant did not differ in comparison to single mutants, indicating lack of an additive effect. Finally, our data suggest that these enzymes play a differential role in virulence, depending on the genetic background of the strain and being more important for the highly virulent ST7 strain.


2021 ◽  
Vol 22 (21) ◽  
pp. 11871
Author(s):  
A. Manuel Liaci ◽  
Friedrich Förster

Cleavable endoplasmic reticulum (ER) signal peptides (SPs) and other non-cleavable signal sequences target roughly a quarter of the human proteome to the ER. These short peptides, mostly located at the N-termini of proteins, are highly diverse. For most proteins targeted to the ER, it is the interactions between the signal sequences and the various ER targeting and translocation machineries such as the signal recognition particle (SRP), the protein-conducting channel Sec61, and the signal peptidase complex (SPC) that determine the proteins’ target location and provide translocation fidelity. In this review, we follow the signal peptide into the ER and discuss the recent insights that structural biology has provided on the governing principles of those interactions.


2021 ◽  
Vol 118 (40) ◽  
pp. e2103573118
Author(s):  
Danuta Mizgalska ◽  
Theodoros Goulas ◽  
Arturo Rodríguez-Banqueri ◽  
Florian Veillard ◽  
Mariusz Madej ◽  
...  

Porphyromonas gingivalis is a keystone pathogen of the human dysbiotic oral microbiome that causes severe periodontitis. It employs a type-IX secretion system (T9SS) to shuttle proteins across the outer membrane (OM) for virulence. Uniquely, T9SS cargoes carry a C-terminal domain (CTD) as a secretion signal, which is cleaved and replaced with anionic lipopolysaccharide by transpeptidation for extracellular anchorage to the OM. Both reactions are carried out by PorU, the only known dual-function, C-terminal signal peptidase and sortase. PorU is itself secreted by the T9SS, but its CTD is not removed; instead, intact PorU combines with PorQ, PorV, and PorZ in the OM-inserted “attachment complex.” Herein, we revealed that PorU transits between active monomers and latent dimers and solved the crystal structure of the ∼260-kDa dimer. PorU has an elongated shape ∼130 Å in length and consists of seven domains. The first three form an intertwined N-terminal cluster likely engaged in substrate binding. They are followed by a gingipain-type catalytic domain (CD), two immunoglobulin-like domains (IGL), and the CTD. In the first IGL, a long “latency β-hairpin” protrudes ∼30 Å from the surface to form an intermolecular β-barrel with β-strands from the symmetric CD, which is in a latent conformation. Homology modeling of the competent CD followed by in vivo validation through a cohort of mutant strains revealed that PorU is transported and functions as a monomer through a C690/H657 catalytic dyad. Thus, dimerization is an intermolecular mechanism for PorU regulation to prevent untimely activity until joining the attachment complex.


2021 ◽  
Vol 12 ◽  
Author(s):  
Denise Mehner-Breitfeld ◽  
Jan Michel Frederik Schwarzkopf ◽  
Ry Young ◽  
Kiran Kondabagil ◽  
Thomas Brüser

Holin/endolysin-mediated lysis of phage T4 of Escherichia coli is tightly regulated by the antiholins RI and RIII. While regulation by the cytoplasmic RIII plays a minor role, the periplasmic antiholin RI binds tightly to the holin T and is believed to directly sense periplasmic phage DNA from superinfections as a trigger for the inhibition of lysis. RI has been reported to contain a non-cleavable signal peptide that anchors the protein to the membrane. Lysis is believed to be induced at some stage by a membrane depolarization that causes a release of RI into the periplasm without cleavage of the signal anchor. For the current model of phage lysis induction, it is thus a fundamental assumption that the N-terminal trans-membrane domain (TMD) of RI is such a signal anchor release (SAR) domain. Here we show that, in contrast to previous reports, this domain of RI is a cleavable signal peptide. RI is processed and released into the periplasm as a mature protein, and inactivation of its signal peptidase cleavage site blocks processing and membrane release. The signal peptide of RI can also mediate the normal translocation of a well-characterized Sec substrate, PhoA, into the periplasm. This simplifies the current view of phage lysis regulation and suggests a fundamentally different interpretation of the recently published structure of the soluble domains of the RI–T complex.


2021 ◽  
Author(s):  
A. Manuel Liaci ◽  
Barbara Steigenberger ◽  
Paulo Cesar Telles de Souza ◽  
Sem Tamara ◽  
Mariska Gröllers-Mulderij ◽  
...  

2021 ◽  
Author(s):  
Chewon Yim ◽  
Yeonji Chung ◽  
Jeesoo Kim ◽  
IngMarie Nilsson ◽  
Jong-Seo Kim ◽  
...  

Signal peptidase (SPase) cleaves the signal sequences (SSs) of secretory precursors. It contains an evolutionarily conserved membrane protein subunit, Spc1 that is dispensable for the catalytic activity of SPase, and its role remains unknown. In the present study, we investigated the function of yeast Spc1. First, we set up an in vivo SPase cleavage assay using secretory protein CPY variants with SSs modified in the n and h regions. When comparing the SS cleavage efficiencies of these variants in cells with or without Spc1, we found that signal-anchored sequences became more susceptible to cleavage by SPase without Spc1. Further, SPase-mediated processing of model membrane proteins was enhanced in the absence of but reduced upon overexpression of Spc1. Spc1 was co-immunoprecipitated with proteins carrying uncleaved signal-anchored or transmembrane (TM) segments. Taken together, these results suggest that Spc1 protects TM segments from SPase action, thereby sharpening substrate selection for SPase and acting as a negative regulator for the SPase-mediated processing of membrane proteins.


Sign in / Sign up

Export Citation Format

Share Document