Characterization of pp60src phosphorylation in vitro in Rous sarcoma virus-transformed cell membranes

1985 ◽  
Vol 5 (5) ◽  
pp. 916-922
Author(s):  
M D Resh ◽  
R L Erikson

Phosphorylation of the src gene product pp60v-src was studied in plasma membrane fractions prepared from Rous sarcoma virus-transformed vole cells. Upon addition of [gamma-32P]ATP to isolated membrane vesicles, phosphate was incorporated into a 60,000-dalton polypeptide identified as pp60v-src. In the presence of vanadate, pp60v-src phosphorylation was stimulated ca. 30-fold. At low concentrations of ATP (1 microM), this reaction occurred almost exclusively on the carboxy-terminal 26,000-dalton region of pp60v-src. However, at higher ATP concentrations (100 microM), additional sites of phosphorylation were evident in the amino-terminal 34,000-dalton region. Kinetic analyses, performed under conditions in which ATP hydrolysis was minimal, revealed that the phosphorylation reaction at the carboxy terminus exhibited a higher Vmax and a lower Km for ATP than those occurring at the amino terminus. In addition, the amino-terminal region of pp60v-src was more rapidly dephosphorylated than the carboxy-terminal region. These results indicate that interaction of pp60v-src with the plasma membrane may limit the extent of amino-terminal phosphorylation by lowering the rate of the reaction and the affinity for the substrate while increasing its susceptibility to phosphoprotein phosphatases. We suggest that the use of transformed-cell membrane preparations provides a model system for studying the possible regulatory roles of phosphorylation and dephosphorylation on pp60v-src function.

1985 ◽  
Vol 5 (5) ◽  
pp. 916-922 ◽  
Author(s):  
M D Resh ◽  
R L Erikson

Phosphorylation of the src gene product pp60v-src was studied in plasma membrane fractions prepared from Rous sarcoma virus-transformed vole cells. Upon addition of [gamma-32P]ATP to isolated membrane vesicles, phosphate was incorporated into a 60,000-dalton polypeptide identified as pp60v-src. In the presence of vanadate, pp60v-src phosphorylation was stimulated ca. 30-fold. At low concentrations of ATP (1 microM), this reaction occurred almost exclusively on the carboxy-terminal 26,000-dalton region of pp60v-src. However, at higher ATP concentrations (100 microM), additional sites of phosphorylation were evident in the amino-terminal 34,000-dalton region. Kinetic analyses, performed under conditions in which ATP hydrolysis was minimal, revealed that the phosphorylation reaction at the carboxy terminus exhibited a higher Vmax and a lower Km for ATP than those occurring at the amino terminus. In addition, the amino-terminal region of pp60v-src was more rapidly dephosphorylated than the carboxy-terminal region. These results indicate that interaction of pp60v-src with the plasma membrane may limit the extent of amino-terminal phosphorylation by lowering the rate of the reaction and the affinity for the substrate while increasing its susceptibility to phosphoprotein phosphatases. We suggest that the use of transformed-cell membrane preparations provides a model system for studying the possible regulatory roles of phosphorylation and dephosphorylation on pp60v-src function.


1984 ◽  
Vol 4 (7) ◽  
pp. 1213-1220
Author(s):  
M S Collett ◽  
S K Belzer ◽  
A F Purchio

When analyzed from transformed cell lysates, pp60v-src, the product of the Rous sarcoma virus src gene, typically appears as a single polypeptide of 60,000 molecular weight, phosphorylated at two major sites, an amino-terminal region serine residue and carboxy-terminal region tyrosine residue. We describe here the identification of variant forms of pp60v-src present in transformed cell lysates that exhibited an altered electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gels. This change in migration appeared to be the result of some alteration in the amino-terminal portion of the molecule and paralleled the appearance of extensive amino-terminal region tyrosine phosphorylation on the pp60v-src molecule. These structural modifications were further correlated with a dramatic increase in the protein kinase-specific activity of pp60v-src. The detection of these variant forms of pp60v-src depended on the prior treatment of the transformed cell cultures with vanadium ions or the inclusion in the cell disruption buffer of Mg2+ or ATP-Mg2+. The implications is that modified, highly active forms of the pp60v-src protein exist in transformed cells, but are transient and rapidly converted to stable forms, possibly by specific dephosphorylation. We suggest that amino-terminal region tyrosine phosphorylation of pp60v-src, presumably the result of autophosphorylation, serves to greatly enhance src protein enzymatic activity, but that much of the regulation of this transforming protein's function may involve a phosphotyrosyl protein phosphatase.


1984 ◽  
Vol 4 (7) ◽  
pp. 1213-1220 ◽  
Author(s):  
M S Collett ◽  
S K Belzer ◽  
A F Purchio

When analyzed from transformed cell lysates, pp60v-src, the product of the Rous sarcoma virus src gene, typically appears as a single polypeptide of 60,000 molecular weight, phosphorylated at two major sites, an amino-terminal region serine residue and carboxy-terminal region tyrosine residue. We describe here the identification of variant forms of pp60v-src present in transformed cell lysates that exhibited an altered electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gels. This change in migration appeared to be the result of some alteration in the amino-terminal portion of the molecule and paralleled the appearance of extensive amino-terminal region tyrosine phosphorylation on the pp60v-src molecule. These structural modifications were further correlated with a dramatic increase in the protein kinase-specific activity of pp60v-src. The detection of these variant forms of pp60v-src depended on the prior treatment of the transformed cell cultures with vanadium ions or the inclusion in the cell disruption buffer of Mg2+ or ATP-Mg2+. The implications is that modified, highly active forms of the pp60v-src protein exist in transformed cells, but are transient and rapidly converted to stable forms, possibly by specific dephosphorylation. We suggest that amino-terminal region tyrosine phosphorylation of pp60v-src, presumably the result of autophosphorylation, serves to greatly enhance src protein enzymatic activity, but that much of the regulation of this transforming protein's function may involve a phosphotyrosyl protein phosphatase.


2015 ◽  
Vol 90 (5) ◽  
pp. 2473-2485 ◽  
Author(s):  
Robert A. Dick ◽  
Marilia Barros ◽  
Danni Jin ◽  
Mathias Lösche ◽  
Volker M. Vogt

ABSTRACTThe principles underlying membrane binding and assembly of retroviral Gag proteins into a lattice are understood. However, little is known about how these processes are related. Using purified Rous sarcoma virus Gag and Gag truncations, we studied the interrelation of Gag-Gag interaction and Gag-membrane interaction. Both by liposome binding and by surface plasmon resonance on a supported bilayer, Gag bound to membranes much more tightly than did matrix (MA), the isolated membrane binding domain. In principle, this difference could be explained either by protein-protein interactions leading to cooperativity in membrane binding or by the simultaneous interaction of the N-terminal MA and the C-terminal nucleocapsid (NC) of Gag with the bilayer, since both are highly basic. However, we found that NC was not required for strong membrane binding. Instead, the spacer peptide assembly domain (SPA), a putative 24-residue helical sequence comprising the 12-residue SP segment of Gag and overlapping the capsid (CA) C terminus and the NC N terminus, was required. SPA is known to be critical for proper assembly of the immature Gag lattice. A single amino acid mutation in SPA that abrogates assemblyin vitrodramatically reduced binding of Gag to liposomes.In vivo, plasma membrane localization was dependent on SPA. Disulfide cross-linking based on ectopic Cys residues showed that the contacts between Gag proteins on the membrane are similar to the known contacts in virus-like particles. Taken together, we interpret these results to mean that Gag membrane interaction is cooperative in that it depends on the ability of Gag to multimerize.IMPORTANCEThe retroviral structural protein Gag has three major domains. The N-terminal MA domain interacts directly with the plasma membrane (PM) of cells. The central CA domain, together with immediately adjoining sequences, facilitates the assembly of thousands of Gag molecules into a lattice. The C-terminal NC domain interacts with the genome, resulting in packaging of viral RNA. For assemblyin vitrowith purified Gag, in the absence of membranes, binding of NC to nucleic acid somehow facilitates further Gag-Gag interactions that lead to formation of the Gag lattice. The contributions of MA-mediated membrane binding to virus particle assembly are not well understood. Here, we report that in the absence of nucleic acid, membranes provide a platform that facilitates Gag-Gag interactions. This study demonstrates that the binding of Gag, but not of MA, to membranes is cooperative and identifies SPA as a major factor that controls this cooperativity.


2015 ◽  
Vol 89 (20) ◽  
pp. 10371-10382 ◽  
Author(s):  
Robert A. Dick ◽  
Siddhartha A. K. Datta ◽  
Hirsh Nanda ◽  
Xianyang Fang ◽  
Yi Wen ◽  
...  

ABSTRACTPreviously, no retroviral Gag protein has been highly purified in milligram quantities and in a biologically relevant and active form. We have purified Rous sarcoma virus (RSV) Gag protein and in parallel several truncation mutants of Gag and have studied their biophysical properties and membrane interactionsin vitro. RSV Gag is unusual in that it is not naturally myristoylated. From its ability to assemble into virus-like particlesin vitro, we infer that RSV Gag is biologically active. By size exclusion chromatography and small-angle X-ray scattering, Gag in solution appears extended and flexible, in contrast to previous reports on unmyristoylated HIV-1 Gag, which is compact. However, by neutron reflectometry measurements of RSV Gag bound to a supported bilayer, the protein appears to adopt a more compact, folded-over conformation. At physiological ionic strength, purified Gag binds strongly to liposomes containing acidic lipids. This interaction is stimulated by physiological levels of phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] and by cholesterol. However, unlike HIV-1 Gag, RSV Gag shows no sensitivity to acyl chain saturation. In contrast with full-length RSV Gag, the purified MA domain of Gag binds to liposomes only weakly. Similarly, both an N-terminally truncated version of Gag that is missing the MA domain and a C-terminally truncated version that is missing the NC domain bind only weakly. These results imply that NC contributes to membrane interactionin vitro, either by directly contacting acidic lipids or by promoting Gag multimerization.IMPORTANCERetroviruses like HIV assemble at and bud from the plasma membrane of cells. Assembly requires the interaction between thousands of Gag molecules to form a lattice. Previous work indicated that lattice formation at the plasma membrane is influenced by the conformation of monomeric HIV. We have extended this work to the more tractable RSV Gag. Our results show that RSV Gag is highly flexible and can adopt a folded-over conformation on a lipid bilayer, implicating both the N and C termini in membrane binding. In addition, binding of Gag to membranes is diminished when either terminal domain is truncated. RSV Gag membrane association is significantly less sensitive than HIV Gag membrane association to lipid acyl chain saturation. These findings shed light on Gag assembly and membrane binding, critical steps in the viral life cycle and an untapped target for antiretroviral drugs.


2002 ◽  
Vol 76 (6) ◽  
pp. 2789-2795 ◽  
Author(s):  
Akash Patnaik ◽  
John W. Wills

ABSTRACT For all enveloped viruses, the actual mechanism by which nascent virus particles separate or “pinch off” from the cell surface is largely unknown. In the case of retroviruses, the Gag protein drives the budding process, and the virus release step is directed by the late (L) assembly domain within Gag. A PPPPY motif within the L domain of Rous sarcoma virus (RSV) was previously characterized as being critical for the release of virions and shown to interact in vitro with the WW domain of Yes-associated protein (Yap). To determine whether WW domain-L domain interactions can occur in vivo, we attempted to interfere with the host cell machinery normally recruited to the site of budding by inserting this WW domain in different locations within Gag. At a C-terminal location, the WWYap domain had no effect on budding, suggesting that the intervening I domains (which provide the major region of Gag-Gag interaction) prevent its access to the L domain. When positioned on the other side of the I domains closer to the L domain, the WWYap domain resulted in a dramatic interference of particle release, and confocal microscopy revealed a block to budding on the plasma membrane. Budding was restored by attachment of the heterologous L domain of human immunodeficiency virus type 1 Gag, which does not bind WWYap. These findings suggest that cis expression of WW domains can interfere with RSV particle release in vivo via specific, high-affinity interactions at the site of assembly on the plasma membrane, thus preventing host factor accessibility to the L domain and subsequent virus-cell separation. In addition, they suggest that L domain-specific host factors function after Gag proteins begin to interact.


1961 ◽  
Vol 114 (4) ◽  
pp. 435-440 ◽  
Author(s):  
Stian Erichsen ◽  
Jan Eng ◽  
Herbert R. Morgan

The chick embryo fibroblast infected by Rous sarcoma virus in vitro acquires the capacity to produce the acid mucopolysaccharides which are found in the tumors caused by this virus and which are also produced by tumor cells in vitro. The transformed cell acquires synthetic as well as morphologic, metabolic, and proliferative properties characteristic of Rous sarcoma tumor cells in vivo and in vitro and the transformed cell may be analogous to the tumor cell produced by virus infection in vivo.


Sign in / Sign up

Export Citation Format

Share Document