scholarly journals Thermolabile L-A virus-like particles from pet18 mutants of Saccharomyces cerevisiae.

1986 ◽  
Vol 6 (2) ◽  
pp. 404-410 ◽  
Author(s):  
T Fujimura ◽  
R B Wickner

pet18 mutations in Saccharomyces cerevisiae confer on the cell the inability to maintain either L-A or M double-stranded RNAs (dsRNAs) at the nonpermissive temperature. In in vitro experiments, we examined the effects of pet18 mutations on the RNA-dependent RNA polymerase activity associated with virus-like particles (VLPs). pet18 mutations caused thermolabile RNA polymerase activity of L-A VLPs, and this thermolability was found to be due to the instability of the L-A VLP structure. The pet18 mutations did not affect RNA polymerase activity of M VLPs. Furthermore, the temperature sensitivity of wild-type L-A RNA polymerase differed substantially from that of M RNA polymerase. From these results, and from other genetic and biochemical lines of evidence which suggest that replication of M dsRNA requires the presence of L-A dsRNA, we propose that the primary effect of the pet18 mutation is on the L-A VLP structure and that the inability of pet18 mutants to maintain M dsRNA comes from the loss of L-A dsRNA.

1986 ◽  
Vol 6 (2) ◽  
pp. 404-410
Author(s):  
T Fujimura ◽  
R B Wickner

pet18 mutations in Saccharomyces cerevisiae confer on the cell the inability to maintain either L-A or M double-stranded RNAs (dsRNAs) at the nonpermissive temperature. In in vitro experiments, we examined the effects of pet18 mutations on the RNA-dependent RNA polymerase activity associated with virus-like particles (VLPs). pet18 mutations caused thermolabile RNA polymerase activity of L-A VLPs, and this thermolability was found to be due to the instability of the L-A VLP structure. The pet18 mutations did not affect RNA polymerase activity of M VLPs. Furthermore, the temperature sensitivity of wild-type L-A RNA polymerase differed substantially from that of M RNA polymerase. From these results, and from other genetic and biochemical lines of evidence which suggest that replication of M dsRNA requires the presence of L-A dsRNA, we propose that the primary effect of the pet18 mutation is on the L-A VLP structure and that the inability of pet18 mutants to maintain M dsRNA comes from the loss of L-A dsRNA.


2006 ◽  
Vol 188 (20) ◽  
pp. 7111-7122 ◽  
Author(s):  
Koji Kasai ◽  
Tomoyasu Nishizawa ◽  
Kosaku Takahashi ◽  
Takeshi Hosaka ◽  
Hiroyuki Aoki ◽  
...  

ABSTRACT Guanosine tetraphosphate (ppGpp) is a key mediator of stringent control, an adaptive response of bacteria to amino acid starvation, and has thus been termed a bacterial alarmone. Previous X-ray crystallographic analysis has provided a structural basis for the transcriptional regulation of RNA polymerase activity by ppGpp in the thermophilic bacterium Thermus thermophilus. Here we investigated the physiological basis of the stringent response by comparing the changes in intracellular ppGpp levels and the rate of RNA synthesis in stringent (rel +; wild type) and relaxed (relA and relC; mutant) strains of T. thermophilus. We found that in wild-type T. thermophilus, as in other bacteria, serine hydroxamate, an amino acid analogue that inhibits tRNASer aminoacylation, elicited a stringent response characterized in part by intracellular accumulation of ppGpp and that this response was completely blocked in a relA-null mutant and partially blocked in a relC mutant harboring a mutation in the ribosomal protein L11. Subsequent in vitro assays using ribosomes isolated from wild-type and relA and relC mutant strains confirmed that (p)ppGpp is synthesized by ribosomes and that mutation of RelA or L11 blocks that activity. This conclusion was further confirmed in vitro by demonstrating that thiostrepton or tetracycline inhibits (p)ppGpp synthesis. In an in vitro system, (p)ppGpp acted by inhibiting RNA polymerase-catalyzed 23S/5S rRNA gene transcription but at a concentration much higher than that of the observed intracellular ppGpp pool size. On the other hand, changes in the rRNA gene promoter activity tightly correlated with changes in the GTP but not ATP concentration. Also, (p)ppGpp exerted a potent inhibitory effect on IMP dehydrogenase activity. The present data thus complement the earlier structural analysis by providing physiological evidence that T. thermophilus does produce ppGpp in response to amino acid starvation in a ribosome-dependent (i.e., RelA-dependent) manner. However, it appears that in T. thermophilus, rRNA promoter activity is controlled directly by the GTP pool size, which is modulated by ppGpp via inhibition of IMP dehydrogenase activity. Thus, unlike the case of Escherichia coli, ppGpp may not inhibit T. thermophilus RNA polymerase activity directly in vivo, as recently proposed for Bacillus subtilis rRNA transcription (L. Krasny and R. L. Gourse, EMBO J. 23:4473-4483, 2004).


Virology ◽  
2009 ◽  
Vol 384 (1) ◽  
pp. 201-208 ◽  
Author(s):  
Jon K. Rubach ◽  
Brian R. Wasik ◽  
Jonathan C. Rupp ◽  
Richard J. Kuhn ◽  
Richard W. Hardy ◽  
...  

1984 ◽  
Vol 4 (1) ◽  
pp. 188-194
Author(s):  
B S Ben-Tzvi ◽  
Y Koltin ◽  
M Mevarech ◽  
A Tamarkin

RNA polymerase activity is associated with the double-stranded RNA virions of Ustilago maydis. The reaction products of the polymerase activity are single-stranded RNA molecules. The RNA molecules synthesized are homologous to the three classes of double-stranded RNA molecules that typify the viral genome. The single-stranded RNA synthesized is released from the virions. The molecular weight of the single-stranded RNA transcripts is about half the size of the double-stranded RNA segments, and thus, it appears that in the in vitro reaction, full-length transcripts can be obtained.


2002 ◽  
Vol 277 (41) ◽  
pp. 38838-38846 ◽  
Author(s):  
Patrick Labonté ◽  
Vladimir Axelrod ◽  
Atul Agarwal ◽  
Ann Aulabaugh ◽  
Anthony Amin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document