scholarly journals Carcinogen-mediated methotrexate resistance and dihydrofolate reductase amplification in Chinese hamster cells.

1986 ◽  
Vol 6 (6) ◽  
pp. 1958-1964 ◽  
Author(s):  
T Kleinberger ◽  
S Etkin ◽  
S Lavi

We have investigated different parameters characterizing carcinogen-mediated enhancement of methotrexate resistance in Chinese hamster ovary (CHO) cells and in simian virus 40-transformed Chinese hamster embryo (C060) cells. We show that this enhancement reflects dihydrofolate reductase (dhfr) gene amplification. The carcinogens used in this work are alkylating agents and UV irradiation. Both types of carcinogens induce a transient enhancement of methotrexate resistance which increases gradually from the time of treatment to 72 to 96 h later and decreases thereafter. Increasing doses of carcinogens decrease cell survival and increase the enhancement of methotrexate resistance. Enhancement was observed when cells were treated at different stages in the cell cycle, and it was maximal when cells were treated during the early S phase. These studies of carcinogen-mediated dhfr gene amplification coupled with our earlier studies on viral DNA amplification in simian virus 40-transformed cells demonstrate that the same parameters characterize the amplification of both genes. Possible cellular mechanisms responsible for the carcinogen-mediated gene amplification phenomenon are discussed.

1986 ◽  
Vol 6 (6) ◽  
pp. 1958-1964
Author(s):  
T Kleinberger ◽  
S Etkin ◽  
S Lavi

We have investigated different parameters characterizing carcinogen-mediated enhancement of methotrexate resistance in Chinese hamster ovary (CHO) cells and in simian virus 40-transformed Chinese hamster embryo (C060) cells. We show that this enhancement reflects dihydrofolate reductase (dhfr) gene amplification. The carcinogens used in this work are alkylating agents and UV irradiation. Both types of carcinogens induce a transient enhancement of methotrexate resistance which increases gradually from the time of treatment to 72 to 96 h later and decreases thereafter. Increasing doses of carcinogens decrease cell survival and increase the enhancement of methotrexate resistance. Enhancement was observed when cells were treated at different stages in the cell cycle, and it was maximal when cells were treated during the early S phase. These studies of carcinogen-mediated dhfr gene amplification coupled with our earlier studies on viral DNA amplification in simian virus 40-transformed cells demonstrate that the same parameters characterize the amplification of both genes. Possible cellular mechanisms responsible for the carcinogen-mediated gene amplification phenomenon are discussed.


1994 ◽  
Vol 14 (12) ◽  
pp. 7782-7791
Author(s):  
S Cohen ◽  
D Hassin ◽  
S Karby ◽  
S Lavi

Early events of DNA amplification which occur during perturbed replication were studied by using simian virus 40 (SV40)-transformed Chinese hamster cells (CO60) as a model system. The amplification is observed shortly after carcinogen treatment, and the amplified sequences contain molecules organized as inverted repeats (IRs). SV40 amplification in vitro was studied by using extracts from carcinogen-treated CO60 cells. In the amplified DNA the SV40 origin region was rereplicated, while more distal sequences were not replicated even once. Using several experimental procedures such as sucrose gradients, "snap-back" assay, and two-dimensional gel electrophoresis, we show that the overreplicated DNA contains IRs which are synthesized de novo as hairpins or stem-loop structures which were detached from the template molecules. The fully replicated SV40 molecules synthesized by the HeLa extracts do not contain such IRs. We propose "U-turn replication" as a novel mechanism for gene amplification, accounting for the generation of extrachromosomal inverted duplications as a result of perturbed replication and template switching of the DNA polymerases.


1994 ◽  
Vol 14 (12) ◽  
pp. 7782-7791 ◽  
Author(s):  
S Cohen ◽  
D Hassin ◽  
S Karby ◽  
S Lavi

Early events of DNA amplification which occur during perturbed replication were studied by using simian virus 40 (SV40)-transformed Chinese hamster cells (CO60) as a model system. The amplification is observed shortly after carcinogen treatment, and the amplified sequences contain molecules organized as inverted repeats (IRs). SV40 amplification in vitro was studied by using extracts from carcinogen-treated CO60 cells. In the amplified DNA the SV40 origin region was rereplicated, while more distal sequences were not replicated even once. Using several experimental procedures such as sucrose gradients, "snap-back" assay, and two-dimensional gel electrophoresis, we show that the overreplicated DNA contains IRs which are synthesized de novo as hairpins or stem-loop structures which were detached from the template molecules. The fully replicated SV40 molecules synthesized by the HeLa extracts do not contain such IRs. We propose "U-turn replication" as a novel mechanism for gene amplification, accounting for the generation of extrachromosomal inverted duplications as a result of perturbed replication and template switching of the DNA polymerases.


1983 ◽  
Vol 3 (9) ◽  
pp. 1598-1608
Author(s):  
R J Kaufman ◽  
P A Sharp

Dihydrofolate reductase (DHFR) synthesis is regulated in a growth-dependent fashion. Dividing cells synthesize DHFR at a 10-fold-higher rate than do stationary cells. To study this growth-dependent synthesis. DHFR genes have been constructed from a DHFR cDNA segment, the adenovirus major late promoter, and fragments of simian virus 40 (SV40) which provide signals for polyadenylation. These genes have been introduced into Chinese hamster ovary cells. The DHFR mRNAs produced in different transformants are identical at their 5' ends, but differ in sequences in their 3' ends as different sites are utilized for polyadenylation. Three transformants that utilize either DHFR polyadenylation signals or the SV40 late polyadenylation signal exhibit growth-dependent DHFR synthesis. The level of DHFR mRNA in growing cells is approximately 10 times that in stationary cells for these transformants. This growth-dependent DHFR mRNA production probably results from posttranscriptional events. In contrast, three transformants that utilize the SV40 early polyadenylation signal and another transformant that utilizes a cellular polyadenylation signal do not exhibit growth-dependent DHFR synthesis. In these three cell lines, the fraction of mRNAs polyadenylated at different sites in a tandem array shifts between growing and stationary cells. These results suggest that the metabolic state of the cell is important in determining either the efficiency of polyadenylation at various sites or the stability of mRNA polyadenylated at various sites.


1981 ◽  
Vol 1 (9) ◽  
pp. 854-864 ◽  
Author(s):  
S Subramani ◽  
R Mulligan ◽  
P Berg

A mouse complementary deoxyribonucleic acid segment coding for the enzyme dihydrofolate reductase has been cloned in two general classes of vectors containing simian virus 40 deoxyribonucleic acid: (i) those that can be propagated as virions in permissive cells and (ii) those that can be introduced into and maintained stably in various mammalian cells. Both types of vectors express the mouse dihydrofolate reductase by using signals supplied by simian virus 40 deoxyribonucleic acid sequences. Moreover, plasmid vectors carrying the complementary deoxyribonucleic acid segment can complement Chinese hamster ovary cells lacking dihydrofolate reductase.


1981 ◽  
Vol 1 (9) ◽  
pp. 854-864
Author(s):  
S Subramani ◽  
R Mulligan ◽  
P Berg

A mouse complementary deoxyribonucleic acid segment coding for the enzyme dihydrofolate reductase has been cloned in two general classes of vectors containing simian virus 40 deoxyribonucleic acid: (i) those that can be propagated as virions in permissive cells and (ii) those that can be introduced into and maintained stably in various mammalian cells. Both types of vectors express the mouse dihydrofolate reductase by using signals supplied by simian virus 40 deoxyribonucleic acid sequences. Moreover, plasmid vectors carrying the complementary deoxyribonucleic acid segment can complement Chinese hamster ovary cells lacking dihydrofolate reductase.


1984 ◽  
Vol 4 (1) ◽  
pp. 166-172
Author(s):  
F McCormick ◽  
M Trahey ◽  
M Innis ◽  
B Dieckmann ◽  
G Ringold

Plasmid DNA containing the human beta-interferon (IFN-beta) gene and mouse dihydrofolate reductase cDNA was transfected into dihydrofolate reductase-negative Chinese hamster ovary cells. Dihydrofolate reductase-positive transformants were obtained, and cells containing amplified copies of mouse dihydrofolate reductase were selected by exposure to increasing methotrexate concentrations. These cells were found to express high levels of human IFN-beta after polyriboinosinic acid-polyribocytidylic acid superinduction or NDV infection; this was a result of coamplification of the IFN-beta gene. Levels of expression of 1 U/cell per day were achieved on superinduction, giving corresponding titers of up to 10(10) U/liter medium in culture supernatants. Constitutive production of IFN-beta rates of about 0.5% of superinduced rates was observed; cells producing these levels of IFN-beta had acquired resistance to cytotoxic antiviral effects of IFN-beta. Two forms of human IFN-beta were produced; a major glycosylated 23,000-dalton form and an unglycosylated 18,500-dalton form. The latter had greatly reduced antiviral activity. IFN-beta production was very sensitive to cellular growth rate; the highest levels were produced by density-arrested cultures. Regulation of IFN-beta production by polyriboinosinic acid-polyribocytidylic acid or by cell density effects required the presence of DNA sequences 5' to the IFN-beta-coding sequences; replacement of these sequences with the simian virus 40 early promoter resulted in uninducible, density-independent production of IFN-beta.


1983 ◽  
Vol 3 (9) ◽  
pp. 1598-1608 ◽  
Author(s):  
R J Kaufman ◽  
P A Sharp

Dihydrofolate reductase (DHFR) synthesis is regulated in a growth-dependent fashion. Dividing cells synthesize DHFR at a 10-fold-higher rate than do stationary cells. To study this growth-dependent synthesis. DHFR genes have been constructed from a DHFR cDNA segment, the adenovirus major late promoter, and fragments of simian virus 40 (SV40) which provide signals for polyadenylation. These genes have been introduced into Chinese hamster ovary cells. The DHFR mRNAs produced in different transformants are identical at their 5' ends, but differ in sequences in their 3' ends as different sites are utilized for polyadenylation. Three transformants that utilize either DHFR polyadenylation signals or the SV40 late polyadenylation signal exhibit growth-dependent DHFR synthesis. The level of DHFR mRNA in growing cells is approximately 10 times that in stationary cells for these transformants. This growth-dependent DHFR mRNA production probably results from posttranscriptional events. In contrast, three transformants that utilize the SV40 early polyadenylation signal and another transformant that utilizes a cellular polyadenylation signal do not exhibit growth-dependent DHFR synthesis. In these three cell lines, the fraction of mRNAs polyadenylated at different sites in a tandem array shifts between growing and stationary cells. These results suggest that the metabolic state of the cell is important in determining either the efficiency of polyadenylation at various sites or the stability of mRNA polyadenylated at various sites.


1984 ◽  
Vol 4 (1) ◽  
pp. 166-172 ◽  
Author(s):  
F McCormick ◽  
M Trahey ◽  
M Innis ◽  
B Dieckmann ◽  
G Ringold

Plasmid DNA containing the human beta-interferon (IFN-beta) gene and mouse dihydrofolate reductase cDNA was transfected into dihydrofolate reductase-negative Chinese hamster ovary cells. Dihydrofolate reductase-positive transformants were obtained, and cells containing amplified copies of mouse dihydrofolate reductase were selected by exposure to increasing methotrexate concentrations. These cells were found to express high levels of human IFN-beta after polyriboinosinic acid-polyribocytidylic acid superinduction or NDV infection; this was a result of coamplification of the IFN-beta gene. Levels of expression of 1 U/cell per day were achieved on superinduction, giving corresponding titers of up to 10(10) U/liter medium in culture supernatants. Constitutive production of IFN-beta rates of about 0.5% of superinduced rates was observed; cells producing these levels of IFN-beta had acquired resistance to cytotoxic antiviral effects of IFN-beta. Two forms of human IFN-beta were produced; a major glycosylated 23,000-dalton form and an unglycosylated 18,500-dalton form. The latter had greatly reduced antiviral activity. IFN-beta production was very sensitive to cellular growth rate; the highest levels were produced by density-arrested cultures. Regulation of IFN-beta production by polyriboinosinic acid-polyribocytidylic acid or by cell density effects required the presence of DNA sequences 5' to the IFN-beta-coding sequences; replacement of these sequences with the simian virus 40 early promoter resulted in uninducible, density-independent production of IFN-beta.


1984 ◽  
Vol 4 (10) ◽  
pp. 2010-2016 ◽  
Author(s):  
V L Funanage ◽  
T T Myoda ◽  
P A Moses ◽  
H R Cowell

Cells from a dihydrofolate reductase-deficient Chinese hamster ovary cell line were hybridized to human fetal skin fibroblast cells. Nineteen dihydrofolate reductase-positive hybrid clones were isolated and characterized. Cytogenetic and biochemical analyses of these clones have shown that the human dihydrofolate reductase (DHFR) gene is located on chromosome 5. Three of these hybrid cell lines contained different terminal deletions of chromosome 5. An analysis of the breakpoints of these deletions has demonstrated that the DHFR gene resides in the q11----q22 region.


Sign in / Sign up

Export Citation Format

Share Document