Replication-defective chimeric helper proviruses and factors affecting generation of competent virus: expression of Moloney murine leukemia virus structural genes via the metallothionein promoter.
Two chimeric helper proviruses were derived from the provirus of the ecotropic Moloney murine leukemia virus by replacing the 5'long terminal repeat and adjacent proviral sequences with the mouse metallothionein I promoter. One of these chimeric proviruses was designed to express the gag-pol genes of the virus, whereas the other was designed to express only the env gene. When transfected into NIH 3T3 cells, these helper proviruses failed to generate competent virus but did express Zn2+-inducible trans-acting viral functions needed to assemble infectious vectors. One helper cell line (clone 32) supported vector assembly at levels comparable to those supported by the Psi-2 and PA317 cell lines transfected with the same vector. Defective proviruses which carry the neomycin phosphotransferase gene and which lack overlapping sequence homology with the 5' end of the chimeric helper proviruses could be transfected into the helper cell line without generation of replication-competent virus. Mass cultures of transfected helper cells produced titers of about 10(4) G418r CFU/ml, whereas individual clones produced titers between 0 and 2.6 X 10(4) CFU/ml. In contrast, defective proviruses which share homologous overlapping viral sequences with the 5' end of the chimeric helper proviruses readily generated infectious virus when transfected into the helper cell line. The deletion of multiple cis-acting functions from the helper provirus and elimination of sequence homology overlapping at the 5' ends of helper and vector proviruses both contribute to the increased genetic stability of this system.