scholarly journals Regulation of interaction of the iron-responsive element binding protein with iron-responsive RNA elements.

1989 ◽  
Vol 9 (11) ◽  
pp. 5055-5061 ◽  
Author(s):  
D J Haile ◽  
M W Hentze ◽  
T A Rouault ◽  
J B Harford ◽  
R D Klausner

The 5' untranslated region of the ferritin heavy-chain mRNA contains a stem-loop structure called an iron-responsive element (IRE), that is solely responsible for the iron-mediated control of ferritin translation. A 90-kilodalton protein, called the IRE binding protein (IRE-BP), binds to the IRE and acts as a translational repressor. IREs also explain the iron-dependent control of the degradation of the mRNA encoding the transferrin receptor. Scatchard analysis reveals that the IRE-BP exists in two states, each of which is able to specifically interact with the IRE. The higher-affinity state has a Kd of 10 to 30 pM, and the lower affinity state has a Kd of 2 to 5 nM. The reversible oxidation or reduction of a sulfhydryl is critical to this switching, and the reduced form is of the higher affinity while the oxidized form is of lower affinity. The in vivo rate of ferritin synthesis is correlated with the abundance of the high-affinity form of the IRE-BP. In lysates of cells treated with iron chelators, which decrease ferritin biosynthesis, a four- to fivefold increase in the binding activity is seen and this increase is entirely caused by an increase in high-affinity binding sites. In desferrioxamine-treated cells, the high-affinity form makes up about 50% of the total IRE-BP, whereas in hemin-treated cells, the high-affinity form makes up less than 1%. The total amount of IRE-BP in the cytosol of cells is the same regardless of the prior iron treatment of the cell. Furthermore, a mutated IRE is not able to interact with the IRE-BP in a high-affinity form but only at a single lower affinity Kd of 0.7 nM. Its interaction with the IRE-BP is insensitive to the sulfhydryl status of the protein.

1989 ◽  
Vol 9 (11) ◽  
pp. 5055-5061
Author(s):  
D J Haile ◽  
M W Hentze ◽  
T A Rouault ◽  
J B Harford ◽  
R D Klausner

The 5' untranslated region of the ferritin heavy-chain mRNA contains a stem-loop structure called an iron-responsive element (IRE), that is solely responsible for the iron-mediated control of ferritin translation. A 90-kilodalton protein, called the IRE binding protein (IRE-BP), binds to the IRE and acts as a translational repressor. IREs also explain the iron-dependent control of the degradation of the mRNA encoding the transferrin receptor. Scatchard analysis reveals that the IRE-BP exists in two states, each of which is able to specifically interact with the IRE. The higher-affinity state has a Kd of 10 to 30 pM, and the lower affinity state has a Kd of 2 to 5 nM. The reversible oxidation or reduction of a sulfhydryl is critical to this switching, and the reduced form is of the higher affinity while the oxidized form is of lower affinity. The in vivo rate of ferritin synthesis is correlated with the abundance of the high-affinity form of the IRE-BP. In lysates of cells treated with iron chelators, which decrease ferritin biosynthesis, a four- to fivefold increase in the binding activity is seen and this increase is entirely caused by an increase in high-affinity binding sites. In desferrioxamine-treated cells, the high-affinity form makes up about 50% of the total IRE-BP, whereas in hemin-treated cells, the high-affinity form makes up less than 1%. The total amount of IRE-BP in the cytosol of cells is the same regardless of the prior iron treatment of the cell. Furthermore, a mutated IRE is not able to interact with the IRE-BP in a high-affinity form but only at a single lower affinity Kd of 0.7 nM. Its interaction with the IRE-BP is insensitive to the sulfhydryl status of the protein.


1993 ◽  
Vol 268 (36) ◽  
pp. 27363-27370
Author(s):  
R S Eisenstein ◽  
P T Tuazon ◽  
K L Schalinske ◽  
S A Anderson ◽  
J A Traugh

1991 ◽  
Vol 19 (22) ◽  
pp. 6333-6333 ◽  
Author(s):  
Caroline C. Philpott ◽  
Tracey A. Rouault ◽  
Richard D. Klausner

2006 ◽  
Vol 27 (1) ◽  
pp. 20-30 ◽  
Author(s):  
Mani Larijani ◽  
Alexander P. Petrov ◽  
Oxana Kolenchenko ◽  
Maribel Berru ◽  
Sergey N. Krylov ◽  
...  

ABSTRACT Activation-induced cytidine deaminase (AID) initiates secondary antibody diversification processes by deaminating cytidines on single-stranded DNA. AID preferentially mutates cytidines preceded by W(A/T)R(A/G) dinucleotides, a sequence specificity that is evolutionarily conserved from bony fish to humans. To uncover the biochemical mechanism of AID, we compared the catalytic and binding kinetics of AID on WRC (a hot-spot motif, where W equals A or T and R equals A or G) and non-WRC motifs. We show that although purified AID preferentially deaminates WRC over non-WRC motifs to the same degree observed in vivo, it exhibits similar binding affinities to either motif, indicating that its sequence specificity is not due to preferential binding of WRC motifs. AID preferentially deaminates bubble substrates of five to seven nucleotides rather than larger bubbles and preferentially binds to bubble-type rather than to single-stranded DNA substrates, suggesting that the natural targets of AID are either transcription bubbles or stem-loop structures. Importantly, AID displays remarkably high affinity for single-stranded DNA as indicated by the low dissociation constants and long half-life of complex dissociation that are typical of transcription factors and single-stranded DNA binding protein. These findings suggest that AID may persist on immunoglobulin and other target sequences after deamination, possibly acting as a scaffolding protein to recruit other factors.


Sign in / Sign up

Export Citation Format

Share Document