Control of beta-interferon expression in murine embryonal carcinoma F9 cells

1989 ◽  
Vol 9 (8) ◽  
pp. 3553-3556
Author(s):  
M K Francis ◽  
J M Lehman

Murine embryonal carcinoma F9 cells, a tissue culture model for early embryonic development, do not produce interferon (IFN) in response to poly(I-C), as determined by an antiviral assay. RNase protection analyses were used to examine total RNA extracted from the cells for the presence of beta-IFN RNA. Whereas F9 cells differentiated in vitro with retinoic acid produced a biologically active protein as well as beta-IFN RNA in response to poly(I-C), undifferentiated F9 cells produced no detectable beta-IFN RNA even in the presence of cycloheximide, an IFN-superinducing agent. These results show that undifferentiated embryonal carcinoma cells do not accumulate beta-IFN RNA in response to an IFN-inducing agent, suggesting a transcriptional regulatory mechanism. However, this control mechanism is altered upon differentiation, since the gene can be transcriptionally activated in retinoic acid-differentiated cells.

1989 ◽  
Vol 9 (8) ◽  
pp. 3553-3556 ◽  
Author(s):  
M K Francis ◽  
J M Lehman

Murine embryonal carcinoma F9 cells, a tissue culture model for early embryonic development, do not produce interferon (IFN) in response to poly(I-C), as determined by an antiviral assay. RNase protection analyses were used to examine total RNA extracted from the cells for the presence of beta-IFN RNA. Whereas F9 cells differentiated in vitro with retinoic acid produced a biologically active protein as well as beta-IFN RNA in response to poly(I-C), undifferentiated F9 cells produced no detectable beta-IFN RNA even in the presence of cycloheximide, an IFN-superinducing agent. These results show that undifferentiated embryonal carcinoma cells do not accumulate beta-IFN RNA in response to an IFN-inducing agent, suggesting a transcriptional regulatory mechanism. However, this control mechanism is altered upon differentiation, since the gene can be transcriptionally activated in retinoic acid-differentiated cells.


1988 ◽  
Vol 8 (5) ◽  
pp. 2097-2104 ◽  
Author(s):  
K Nishimori ◽  
T Kohda ◽  
J Fujiwara ◽  
M Oishi

We have recently reported a mammalian cell plasmid (L factor) whose structure is related to that of polyomavirus (T. Kusano, H. Uehara, H. Saito, K. Segawa, and M. Oishi, Proc. Natl. Acad. Sci. USA 84:1789-1793, 1987). When composite DNA constructed from L factor and a foreign gene was introduced into mouse embryonal carcinoma (F9) cells by transfection, the DNA was reestablished in the cells as a plasmid. The reestablished plasmid DNA in F9 cells could be rescued in Escherichia coli. The plasmid-bearing cells underwent normal in vitro differentiation in response to retinoic acid. The efficiency of plasmid establishment of the L-factor-derived DNA and transcriptional and transient replicational activities were compared with those of similar composite DNA constructed from polyomavirus and an embryonal carcinoma mutant of polyomavirus which is permissive in F9 cells. The results suggest an inverse relationship between the efficiency of the plasmid establishment and the activity of gene expression controlled by the intrinsic enhancer-promoter of the DNA.


1988 ◽  
Vol 8 (5) ◽  
pp. 2097-2104
Author(s):  
K Nishimori ◽  
T Kohda ◽  
J Fujiwara ◽  
M Oishi

We have recently reported a mammalian cell plasmid (L factor) whose structure is related to that of polyomavirus (T. Kusano, H. Uehara, H. Saito, K. Segawa, and M. Oishi, Proc. Natl. Acad. Sci. USA 84:1789-1793, 1987). When composite DNA constructed from L factor and a foreign gene was introduced into mouse embryonal carcinoma (F9) cells by transfection, the DNA was reestablished in the cells as a plasmid. The reestablished plasmid DNA in F9 cells could be rescued in Escherichia coli. The plasmid-bearing cells underwent normal in vitro differentiation in response to retinoic acid. The efficiency of plasmid establishment of the L-factor-derived DNA and transcriptional and transient replicational activities were compared with those of similar composite DNA constructed from polyomavirus and an embryonal carcinoma mutant of polyomavirus which is permissive in F9 cells. The results suggest an inverse relationship between the efficiency of the plasmid establishment and the activity of gene expression controlled by the intrinsic enhancer-promoter of the DNA.


Author(s):  
Sarah E. Walker ◽  
Gaynor E. Spencer ◽  
Alexsandr Necakov ◽  
Robert L. Carlone

Retinoic acid (RA) is the biologically active metabolite of vitamin A,and has become a well-established factor that induces neurite outgrowth and regeneration in both vertebrates and invertebrates. However, the underlying regulatory mechanisms that may mediate RA-induced neurite sprouting remain unclear. In the past decade, microRNAs have emerged as important regulators of nervous system development and regeneration, and have been shown to contribute to processes such as neurite sprouting. However, few studies have demonstrated the role of miRNAs in RA-induced neurite sprouting. By R-Seq analysis, we identify 482 miRNAs in the regenerating CNS of the mollusc Lymnaea stagnalis, 219 of which represent potentially novel miRNAs. Of the remaining conserved miRNAs, 38 show a statistically significant up or downregulation in regenerating CNS as a result of RA treatment. We further characterized the expression of one neuronally-enriched miRNA upregulated by RA, miR-124. We demonstrate for the first time that miR-124 is expressed within the cell bodies and neurites of regenerating motorneurons. Moreover, we identify miR-124 expression within the growth cones of cultured ciliary motorneurons (Pedal A), whereas expression from the growth cones of another class of respiratory motorneurons (RPA) was absent in vitro. These findings support our hypothesis miRNAs are important regulators of retinoic acid induced neuronal outgrowth and regeneration in regeneration-competent species.


1983 ◽  
Vol 3 (12) ◽  
pp. 2259-2270
Author(s):  
F J Benham ◽  
M V Wiles ◽  
P N Goodfellow

The mouse embryonal carcinoma (EC) line, PCC4, was used to construct a series of somatic cell hybrids which contain a single or a few human chromosomes. The hybrids all retained the EC phenotype as determined by morphology, expression of SSEA-1, lack of cell surface H-2 antigen and cytokeratin filaments, high alkaline phosphatase levels, the ability to form EC tumors ectopically in nude mice, and the ability to differentiate in response to retinoic acid. Constitutively differentiated cloned lines were derived from retinoic acid-treated hybrid cultures. Several derived lines had a phenotype indistinguishable from that of parietal endoderm cells, which includes synthesis of large amounts of laminin, type IV procollagen, and plasminogen activator. One differentiated line showed a fibroblast-like morphology. The differentiated lines derived from two of the hybrids, MCP6 and GEOC4, stably maintained the sole human chromosomal component present in the EC progenitors. These EC hybrids therefore provide a system to study developmental regulation of the introduced and stably maintained human genetic material derived from a variety of cell types.


1989 ◽  
Vol 9 (3) ◽  
pp. 1357-1361
Author(s):  
E Schuuring ◽  
L van Deemter ◽  
H Roelink ◽  
R Nusse

In mouse embryos, the int-1 proto-oncogene is transiently expressed in areas of the developing neural system. Retinoic acid-treated P19 embryonal carcinoma cells have often been used as an in vitro model for the molecular basis of neural development. We shown here that int-1 is transiently expressed in differentiated P19 cells. The time course and retinoic acid dose dependence of int-1 expression suggest that the gene is specifically expressed during early neural differentiation. P19 cells may be a useful model to assist in the study, at the cellular level, of the role of int-1 in neural development.


1984 ◽  
Vol 4 (2) ◽  
pp. 317-323
Author(s):  
L Dandolo ◽  
J Aghion ◽  
D Blangy

Expression of wild-type polyomavirus (Py) is restricted in murine embryonal carcinoma (EC) cells. The block appears to be located at the level of early transcription. Since no T antigen is produced, we investigated the fate of viral DNA upon infection of these cells; we showed that wild-type Py DNA replicates efficiently in all EC cells, probably via a T-antigen-independent mechanism. Furthermore, we studied, at permissive and restrictive temperatures, the replication of tsa (thermosensitive for T antigen) viral DNA of an in vitro-constructed deletion mutant lacking part of the early region coding sequences and of a double mutant carrying both the tsa mutation and the PyEC F9 mutation (allowing expression of early and late viral functions in EC cells). Our results imply that replication of wild-type A2 strain Py DNA can occur in EC cells in the absence of a functional T antigen. However, this protein clearly enhances viral DNA replication and is absolutely required in differentiated cells.


2002 ◽  
Vol 22 (13) ◽  
pp. 4815-4826 ◽  
Author(s):  
Chunyuan Jin ◽  
Hongjie Li ◽  
Takehide Murata ◽  
Kailai Sun ◽  
Masami Horikoshi ◽  
...  

ABSTRACT Up-regulation of the c-jun gene is a critical event in the retinoic acid (RA)-mediated differentiation of embryonal carcinoma F9 cells. Activating transcription factor 2 (ATF-2) and p300 cooperate in the activation of transcription of the c-jun gene during the differentiation of F9 cells. We show here that the overexpression of Jun dimerization protein 2 (JDP2), a repressor of AP-1, inhibits the transactivation of the c-jun gene by ATF-2 and p300 by recruitment of the histone deacetylase 3 (HDAC3) complex, thereby repressing the RA-induced transcription of the c-jun gene and inhibiting the RA-mediated differentiation of F9 cells. Moreover, chromatin immunoprecipitation assays showed that the JDP2/HDAC3 complex, which binds to the differentiation response element within the c-jun promoter in undifferentiated F9 cells, was replaced by the p300 complex in response to RA, with an accompanying change in the histone acetylation status of the chromatin, the initiation of transcription of the c-jun gene, and the subsequent differentiation of F9 cells. These results suggest that JDP2 may be a key factor that controls the commitment of F9 cells to differentiation and shed new light on the mechanism by which an AP-1 repressor functions.


Sign in / Sign up

Export Citation Format

Share Document