scholarly journals DNA Replication in the Archaea

2006 ◽  
Vol 70 (4) ◽  
pp. 876-887 ◽  
Author(s):  
Elizabeth R. Barry ◽  
Stephen D. Bell

SUMMARY The archaeal DNA replication machinery bears striking similarity to that of eukaryotes and is clearly distinct from the bacterial apparatus. In recent years, considerable advances have been made in understanding the biochemistry of the archaeal replication proteins. Furthermore, a number of structures have now been obtained for individual components and higher-order assemblies of archaeal replication factors, yielding important insights into the mechanisms of DNA replication in both archaea and eukaryotes.

2013 ◽  
Vol 88 (6) ◽  
pp. 315-319 ◽  
Author(s):  
Sonoko Ishino ◽  
Lori M. Kelman ◽  
Zvi Kelman ◽  
Yoshizumi Ishino

2004 ◽  
Vol 166 (4) ◽  
pp. 455-463 ◽  
Author(s):  
David A. Solomon ◽  
M. Cristina Cardoso ◽  
Erik S. Knudsen

Components of the DNA replication machinery localize into discrete subnuclear foci after DNA damage, where they play requisite functions in repair processes. Here, we find that the replication factors proliferating cell nuclear antigen (PCNA) and RPAp34 dynamically exchange at these repair foci with discrete kinetics, and this behavior is distinct from kinetics during DNA replication. Posttranslational modification is hypothesized to target specific proteins for repair, and we find that accumulation and stability of PCNA at sites of damage requires monoubiquitination. Contrary to the popular notion that phosphorylation on the NH2 terminus of RPAp34 directs the protein for repair, we demonstrate that phosphorylation by DNA-dependent protein kinase enhances RPAp34 turnover at repair foci. Together, these findings support a dynamic exchange model in which multiple repair factors regulated by specific modifications have access to and rapidly turn over at sites of DNA damage.


2013 ◽  
Vol 41 (1) ◽  
pp. 332-338 ◽  
Author(s):  
Zhuo Li ◽  
Lori M. Kelman ◽  
Zvi Kelman

DNA replication plays an essential role in all life forms. Research on archaeal DNA replication began approximately 20 years ago. Progress was hindered, however, by the lack of genetic tools to supplement the biochemical and structural studies. This has changed, however, and genetic approaches are now available for several archaeal species. One of these organisms is the thermophilic euryarchaeon Thermococcus kodakarensis. In the present paper, the recent developments in the biochemical, structural and genetic studies on the replication machinery of T. kodakarensis are summarized.


2018 ◽  
Vol 62 (3) ◽  
pp. 287-296 ◽  
Author(s):  
Maria Falkenberg

Mammalian mitochondria contain multiple copies of a circular, double-stranded DNA genome and a dedicated DNA replication machinery is required for its maintenance. Many disease-causing mutations affect mitochondrial replication factors and a detailed understanding of the replication process may help to explain the pathogenic mechanisms underlying a number of mitochondrial diseases. We here give a brief overview of DNA replication in mammalian mitochondria, describing our current understanding of this process and some unanswered questions remaining.


2009 ◽  
Vol 83 (15) ◽  
pp. 7581-7589 ◽  
Author(s):  
Blair L. Strang ◽  
Elisa Sinigalia ◽  
Laurie A. Silva ◽  
Donald M. Coen ◽  
Arianna Loregian

ABSTRACT The central enzyme responsible for human cytomegalovirus (HCMV) DNA synthesis is a virally encoded DNA polymerase that includes a catalytic subunit, UL54, and a homodimeric accessory subunit, UL44, the presumptive HCMV DNA polymerase processivity factor. The structure of UL44 is similar to that of the eukaryotic processivity factor proliferating cell nuclear antigen (PCNA), which interacts with numerous other proteins required for faithful DNA replication. We sought to determine whether, like PCNA, UL44 is capable of interacting with multiple DNA replication proteins and, if so, whether these proteins bind UL44 at the site corresponding to where multiple proteins bind to PCNA. Initially, several proteins, including the viral DNA replication factors UL84 and UL57, were identified by mass spectrometry in immunoprecipitates of UL44 from infected cell lysate. The association of UL44/UL84, but not UL44/UL57, was confirmed by reciprocal coimmunoprecipitation of these proteins from infected cell lysates and was resistant to nuclease treatment. Yeast two-hybrid analyses demonstrated that the substitution of residues in UL44 that prevent UL44 homodimerization or abrogate the binding of UL54 to UL44 do not abrogate the UL44/UL84 interaction. Reciprocal glutathione-S-transferase (GST) pulldown experiments using bacterially expressed UL44 and UL84 confirmed these results and, further, demonstrated that a UL54-derived peptide that competes with UL54 for UL44 binding does not prevent the association of UL84 with UL44. Taken together, our results strongly suggest that UL44 and UL84 interact directly using a region of UL44 different from the UL54 binding site. Thus, UL44 can bind interacting replication proteins using a mechanism different from that of PCNA.


mBio ◽  
2010 ◽  
Vol 1 (5) ◽  
Author(s):  
Zhuo Li ◽  
Thomas J. Santangelo ◽  
Ľubomíra Čuboňová ◽  
John N. Reeve ◽  
Zvi Kelman

ABSTRACTNineteenThermococcus kodakarensisstrains have been constructed, each of which synthesizes a different His6-tagged protein known or predicted to be a component of the archaeal DNA replication machinery. Using the His6-tagged proteins, stable complexes assembledin vivohave been isolated directly from clarified cell lysates and theT. kodakarensisproteins present have been identified by mass spectrometry. Based on the results obtained, a network of interactions among the archaeal replication proteins has been established that confirms previously documented and predicted interactions, provides experimental evidence for previously unrecognized interactions between proteins with known functions and with unknown functions, and establishes a firm experimental foundation for archaeal replication research. The proteins identified and their participation in archaeal DNA replication are discussed and related to their bacterial and eukaryotic counterparts.IMPORTANCEDNA replication is a central and essential event in all cell cycles. Historically, the biological world was divided into prokaryotes and eukaryotes, based on the absence or presence of a nuclear membrane, and many components of the DNA replication machinery have been identified and characterized as conserved or nonconserved in prokaryotic versus eukaryotic organisms. However, it is now known that there are two evolutionarily distinct prokaryotic domains,BacteriaandArchaea, and to date, most prokaryotic replication research has investigated bacterial replication. Here, we have taken advantage of recently developed genetic techniques to isolate and identify many proteins likely to be components of the archaeal DNA replication machinery. The results confirm and extend predictions from genome sequencing that the archaeal replication system is less complex but more closely related to a eukaryotic than to a bacterial replication system.


2021 ◽  
Vol 19 ◽  
pp. 2057-2069
Author(s):  
Rebeca Bocanegra ◽  
G.A. Ismael Plaza ◽  
Carlos R. Pulido ◽  
Borja Ibarra

Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 521-534
Author(s):  
Peter M Garber ◽  
Jasper Rine

Abstract The MAD2-dependent spindle checkpoint blocks anaphase until all chromosomes have achieved successful bipolar attachment to the mitotic spindle. The DNA damage and DNA replication checkpoints block anaphase in response to DNA lesions that may include single-stranded DNA and stalled replication forks. Many of the same conditions that activate the DNA damage and DNA replication checkpoints also activated the spindle checkpoint. The mad2Δ mutation partially relieved the arrest responses of cells to mutations affecting the replication proteins Mcm3p and Pol1p. Thus a previously unrecognized aspect of spindle checkpoint function may be to protect cells from defects in DNA replication. Furthermore, in cells lacking either the DNA damage or the DNA replication checkpoints, the spindle checkpoint contributed to the arrest responses of cells to the DNA-damaging agent methyl methanesulfonate, the replication inhibitor hydroxyurea, and mutations affecting Mcm2p and Orc2p. Thus the spindle checkpoint was sensitive to a wider range of chromosomal perturbations than previously recognized. Finally, the DNA replication checkpoint did not contribute to the arrests of cells in response to mutations affecting ORC, Mcm proteins, or DNA polymerase δ. Thus the specificity of this checkpoint may be more limited than previously recognized.


Sign in / Sign up

Export Citation Format

Share Document