Overlapping Roles of the Spindle Assembly and DNA Damage Checkpoints in the Cell-Cycle Response to Altered Chromosomes in Saccharomyces cerevisiae

Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 521-534
Author(s):  
Peter M Garber ◽  
Jasper Rine

Abstract The MAD2-dependent spindle checkpoint blocks anaphase until all chromosomes have achieved successful bipolar attachment to the mitotic spindle. The DNA damage and DNA replication checkpoints block anaphase in response to DNA lesions that may include single-stranded DNA and stalled replication forks. Many of the same conditions that activate the DNA damage and DNA replication checkpoints also activated the spindle checkpoint. The mad2Δ mutation partially relieved the arrest responses of cells to mutations affecting the replication proteins Mcm3p and Pol1p. Thus a previously unrecognized aspect of spindle checkpoint function may be to protect cells from defects in DNA replication. Furthermore, in cells lacking either the DNA damage or the DNA replication checkpoints, the spindle checkpoint contributed to the arrest responses of cells to the DNA-damaging agent methyl methanesulfonate, the replication inhibitor hydroxyurea, and mutations affecting Mcm2p and Orc2p. Thus the spindle checkpoint was sensitive to a wider range of chromosomal perturbations than previously recognized. Finally, the DNA replication checkpoint did not contribute to the arrests of cells in response to mutations affecting ORC, Mcm proteins, or DNA polymerase δ. Thus the specificity of this checkpoint may be more limited than previously recognized.

2004 ◽  
Vol 279 (45) ◽  
pp. 47372-47378 ◽  
Author(s):  
Izumi Sugimoto ◽  
Hiroshi Murakami ◽  
Yuko Tonami ◽  
Akihiko Moriyama ◽  
Makoto Nakanishi

Genome ◽  
2002 ◽  
Vol 45 (5) ◽  
pp. 881-889 ◽  
Author(s):  
Colleen M Radcliffe ◽  
Elizabeth A Silva ◽  
Shelagh D Campbell

In multi-cellular organisms, failure to properly regulate cell-cycle progression can result in inappropriate cell death or uncontrolled cell division leading to tumor formation. To guard against such events, conserved regulatory mechanisms called "checkpoints" block progression into mitosis in response to DNA damage and incomplete replication, as well as in response to other signals. Checkpoint mutants in organisms as diverse as yeast and humans are sensitive to various chemical agents that inhibit DNA replication or cause DNA damage. This phenomenon is the primary rationale for chemotherapy, which uses drugs that preferentially target tumor cells with compromised checkpoints. In this study, we demonstrate the use of Drosophila checkpoint mutants as a system for assaying the effects of various DNA-damaging and anti-cancer agents in a developing multicellular organism. Dwee1, grp and mei-41 are genes that encode kinases that function in the DNA replication checkpoint. We tested zygotic mutants of each gene for sensitivity to the DNA replication inhibitor hydroxyurea (HU), methyl methanosulfonate (MMS), ara-C, cisplatin, and the oxygen radical generating compound paraquat. The mutants show distinct differences in their sensitivity to each of the drugs tested, suggesting an underlying complexity in the responses of individual checkpoint genes to genotoxic stress.Key words: hydroxyurea (HU), ara-C, cisplatin, methyl methane sulfonate (MMS), paraquat.


2013 ◽  
Vol 24 (21) ◽  
pp. 3350-3357 ◽  
Author(s):  
Tsvetomira Ivanova ◽  
Isabel Alves-Rodrigues ◽  
Blanca Gómez-Escoda ◽  
Chaitali Dutta ◽  
James A. DeCaprio ◽  
...  

In fission yeast cells, Cds1 is the effector kinase of the DNA replication checkpoint. We previously showed that when the DNA replication checkpoint is activated, the repressor Yox1 is phosphorylated and inactivated by Cds1, resulting in activation of MluI-binding factor (MBF)–dependent transcription. This is essential to reinitiate DNA synthesis and for correct G1-to-S transition. Here we show that Cdc10, which is an essential part of the MBF core, is the target of the DNA damage checkpoint. When fission yeast cells are treated with DNA-damaging agents, Chk1 is activated and phosphorylates Cdc10 at its carboxy-terminal domain. This modification is responsible for the repression of MBF-dependent transcription through induced release of MBF from chromatin. This inactivation of MBF is important for survival of cells challenged with DNA-damaging agents. Thus Yox1 and Cdc10 couple normal cell cycle regulation in unperturbed conditions and the DNA replication and DNA damage checkpoints into a single transcriptional complex.


Nature ◽  
2001 ◽  
Vol 412 (6846) ◽  
pp. 557-561 ◽  
Author(s):  
Massimo Lopes ◽  
Cecilia Cotta-Ramusino ◽  
Achille Pellicioli ◽  
Giordano Liberi ◽  
Paolo Plevani ◽  
...  

2011 ◽  
Vol 193 (2) ◽  
pp. 267-273 ◽  
Author(s):  
Jiadong Wang ◽  
Zihua Gong ◽  
Junjie Chen

Human TopBP1 is a major player in the control of the DNA replication checkpoint. In this study, we identified MDC1, a key checkpoint protein involved in the cellular response to DNA double-strand breaks, as a TopBP1-associated protein. The specific TopBP1–MDC1 interaction is mediated by the fifth BRCT domain of TopBP1 and the Ser-Asp-Thr (SDT) repeats of MDC1. In addition, we demonstrated that TopBP1 accumulation at stalled replication forks is promoted by the H2AX/MDC1 signaling cascade. Moreover, MDC1 is important for ATR-dependent Chk1 activation in response to replication stress. Collectively, our data suggest that MDC1 facilitates several important steps in both cellular DNA damage response and the DNA replication checkpoint.


2018 ◽  
Vol 46 (6) ◽  
pp. 1643-1651 ◽  
Author(s):  
Darshil R. Patel ◽  
Robert S. Weiss

Eukaryotic cells continuously experience DNA damage that can perturb key molecular processes like DNA replication. DNA replication forks that encounter DNA lesions typically slow and may stall, which can lead to highly detrimental fork collapse if appropriate protective measures are not executed. Stabilization and protection of stalled replication forks ensures the possibility of effective fork restart and prevents genomic instability. Recent efforts from multiple laboratories have highlighted several proteins involved in replication fork remodeling and DNA damage response pathways as key regulators of fork stability. Homologous recombination factors such as RAD51, BRCA1, and BRCA2, along with components of the Fanconi Anemia pathway, are now known to be crucial for stabilizing stalled replication forks and preventing nascent strand degradation. Several checkpoint proteins have additionally been implicated in fork protection. Ongoing work in this area continues to shed light on a sophisticated molecular pathway that balances the action of DNA resection and fork protection to maintain genomic integrity, with important implications for the fate of both normal and malignant cells following replication stress.


2004 ◽  
Vol 3 (6) ◽  
pp. 1557-1566 ◽  
Author(s):  
Soma Banerjee ◽  
Kyungjae Myung

ABSTRACT Gross chromosomal rearrangements (GCRs) are frequently observed in cancer cells. Abnormalities in different DNA metabolism including DNA replication, cell cycle checkpoints, chromatin remodeling, telomere maintenance, and DNA recombination and repair cause GCRs in Saccharomyces cerevisiae. Recently, we used genome-wide screening to identify several genes the deletion of which increases GCRs in S. cerevisiae. Elg1, which was discovered during this screening, functions in DNA replication by participating in an alternative replication factor complex. Here we further characterize the GCR suppression mechanisms observed in the elg1Δ mutant strain in conjunction with the telomere maintenance role of Elg1. The elg1Δ mutation enhanced spontaneous DNA damage and resulted in GCR formation. However, DNA damage due to inactivation of Elg1 activates the intra-S checkpoints, which suppress further GCR formation. The intra-S checkpoints activated by the elg1Δ mutation also suppress GCR formation in strains defective in the DNA replication checkpoint. Lastly, the elg1Δ mutation increases telomere size independently of other previously known telomere maintenance proteins such as the telomerase inhibitor Pif1 or the telomere size regulator Rif1. The increase in telomere length caused by the elg1Δ mutation was suppressed by a defect in the DNA replication checkpoint, which suggests that DNA replication surveillance by Dpb11-Mec1/Tel1-Dun1 also has an important role in telomere length regulation.


2004 ◽  
Vol 279 (51) ◽  
pp. 53353-53364 ◽  
Author(s):  
Hae Yong Yoo ◽  
Anna Shevchenko ◽  
Andrej Shevchenko ◽  
William G. Dunphy

Genetics ◽  
2003 ◽  
Vol 163 (3) ◽  
pp. 973-982 ◽  
Author(s):  
Nisrine Masrouha ◽  
Long Yang ◽  
Sirine Hijal ◽  
Stéphane Larochelle ◽  
Beat Suter

Abstract Cell cycle checkpoints are signal transduction pathways that control the order and timing of cell cycle transitions, ensuring that critical events are completed before the occurrence of the next cell cycle transition. The Chk2 family of kinases is known to play a central role in mediating the cellular responses to DNA damage or DNA replication blocks in various organisms. Here we show through a phylogenetic study that the Drosophila melanogaster serine/threonine kinase Loki is the homolog of the yeast Mek1p, Rad53p, Dun1p, and Cds1 proteins as well as the human Chk2. Functional analyses allowed us to conclude that, in flies, chk2 is involved in monitoring double-strand breaks (DSBs) caused by irradiation during S and G2 phases. In this process it plays an essential role in inducing a cell cycle arrest in embryonic cells. Our results also show that, in contrast to C. elegans chk2, Drosophila chk2 is not essential for normal meiosis and recombination, and it also appears to be dispensable for the MMS-induced DNA damage checkpoint and the HU-induced DNA replication checkpoint during larval development. In addition, Drosophila chk2 does not act at the same cell cycle phases as its yeast homologs, but seems rather to be involved in a pathway similar to the mammalian one, which involves signaling through the ATM/Chk2 pathway in response to genotoxic insults. As mutations in human chk2 were linked to several cancers, these similarities point to the usefulness of the Drosophila model system.


Sign in / Sign up

Export Citation Format

Share Document