Nicotinamide adenine dinucleotide biosynthesis and pyridine nucleotide cycle metabolism in microbial systems.

1980 ◽  
Vol 44 (1) ◽  
pp. 83-105
Author(s):  
J W Foster ◽  
A G Moat
1974 ◽  
Vol 20 (2) ◽  
pp. 205-209 ◽  
Author(s):  
Gerald J. Tritz

The biosynthesis of nicotinamide adenine dinucleotide (NAD) is under the genetic control of the nadR+ locus. The nadR+ allele is dominant to the nadR allele in transheterogenotes, indicating that the regulation is of the positive type. Mutants of the nadR type are unable to synthesize quinolinic acid; however, they do retain the ability to convert quinolinic acid into NAD and to recycle this NAD through the pyridine nucleotide cycle. Thus, the nadR+ locus regulates only genes involved in the biosynthesis of quinolinic acid.


Blood ◽  
1988 ◽  
Vol 71 (2) ◽  
pp. 512-515 ◽  
Author(s):  
CR Zerez ◽  
NA Lachant ◽  
SJ Lee ◽  
KR Tanaka

Abstract RBCs from individuals with sickle cell disease are more susceptible to oxidant damage. Because key antioxidant defense reactions are linked to the pyridine nucleotides nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP), we tested the hypothesis that the RBC redox potential as manifested by the NADH/[NAD+ + NADH] and NADPH/[NADP+ + NADPH] ratios is decreased in sickle erythrocytes. Our data demonstrate that sickle RBCs have a significant decrease in the NADH/[NAD+ + NADH] ratio compared with normal RBCs (P less than .00005). Interestingly, sickle RBCs also had a significant increase in total NAD content compared with normal RBCs (P less than .00005). In contrast, although sickle RBCs had a significant increase in the total NADP content compared with normal RBCs (P less than .00005), sickle RBCs had no significant alteration in the NADPH/[NADP+ + NADPH] ratio. High reticulocyte controls demonstrated that these changes were not related to cell age. Thus, sickle RBCs have a decrease in NAD redox potential that may be a reflection of their increased oxidant sensitivity. The changes in these pyridine nucleotides may have further metabolic consequences for the sickle erythrocyte.


Blood ◽  
1988 ◽  
Vol 71 (2) ◽  
pp. 512-515 ◽  
Author(s):  
CR Zerez ◽  
NA Lachant ◽  
SJ Lee ◽  
KR Tanaka

RBCs from individuals with sickle cell disease are more susceptible to oxidant damage. Because key antioxidant defense reactions are linked to the pyridine nucleotides nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP), we tested the hypothesis that the RBC redox potential as manifested by the NADH/[NAD+ + NADH] and NADPH/[NADP+ + NADPH] ratios is decreased in sickle erythrocytes. Our data demonstrate that sickle RBCs have a significant decrease in the NADH/[NAD+ + NADH] ratio compared with normal RBCs (P less than .00005). Interestingly, sickle RBCs also had a significant increase in total NAD content compared with normal RBCs (P less than .00005). In contrast, although sickle RBCs had a significant increase in the total NADP content compared with normal RBCs (P less than .00005), sickle RBCs had no significant alteration in the NADPH/[NADP+ + NADPH] ratio. High reticulocyte controls demonstrated that these changes were not related to cell age. Thus, sickle RBCs have a decrease in NAD redox potential that may be a reflection of their increased oxidant sensitivity. The changes in these pyridine nucleotides may have further metabolic consequences for the sickle erythrocyte.


Sign in / Sign up

Export Citation Format

Share Document