scholarly journals Near-Complete Genome Sequence of Ndumu Virus from Garissa, Kenya, 1997

2021 ◽  
Vol 10 (34) ◽  
Author(s):  
Naazneen Moolla ◽  
Natalie Viljoen ◽  
Venessa Patharoo ◽  
Antoinette Grobbelaar ◽  
Arshad Ismail ◽  
...  

We report a nearly complete genome sequence of Ndumu virus (NDUV) identified using a metagenomics approach. The sequence was derived from a viral isolate obtained from a bovine calf following a diagnostic investigation of the 1997 to 1998 Rift Valley fever (RVF) outbreak in the Garissa District of northeastern Kenya.

2016 ◽  
Vol 4 (2) ◽  
Author(s):  
Sarah Lumley ◽  
Daniel L. Horton ◽  
Denise A. Marston ◽  
Nicholas Johnson ◽  
Richard J. Ellis ◽  
...  

Using next-generation sequencing technologies, the first complete genome sequence of Rift Valley fever virus strain Lunyo is reported here. Originally reported as an attenuated antigenic variant strain from Uganda, genomic sequence analysis shows that Lunyo clusters together with other Ugandan isolates.


2016 ◽  
Vol 4 (5) ◽  
Author(s):  
Vinay Shivanna ◽  
Chester McDowell ◽  
William C. Wilson ◽  
Juergen A. Richt

The complete genome sequence, including the untranslated regions, of two Rift Valley fever virus (RVFV) strains isolated from mosquitoes that were collected from disease outbreaks in Saudi Arabia (2001) and Kenya (2006 to 2007) were sequenced using next-generation sequencing technology.


2006 ◽  
Vol 81 (6) ◽  
pp. 2805-2816 ◽  
Author(s):  
Brian H. Bird ◽  
Marina L. Khristova ◽  
Pierre E. Rollin ◽  
Thomas G. Ksiazek ◽  
Stuart T. Nichol

ABSTRACT Rift Valley fever (RVF) virus is a mosquito-borne RNA virus responsible for large explosive outbreaks of acute febrile disease in humans and livestock in Africa with significant mortality and economic impact. The successful high-throughput generation of the complete genome sequence was achieved for 33 diverse RVF virus strains collected from throughout Africa and Saudi Arabia from 1944 to 2000, including strains differing in pathogenicity in disease models. While several distinct virus genetic lineages were determined, which approximately correlate with geographic origin, multiple exceptions indicative of long-distance virus movement have been found. Virus strains isolated within an epidemic (e.g., Mauritania, 1987, or Egypt, 1977 to 1978) exhibit little diversity, while those in enzootic settings (e.g., 1970s Zimbabwe) can be highly diverse. In addition, the large Saudi Arabian RVF outbreak in 2000 appears to have involved virus introduction from East Africa, based on the close ancestral relationship of a 1998 East African virus. Virus genetic diversity was low (∼5%) and primarily involved accumulation of mutations at an average of 2.9 × 10−4 substitutions/site/year, although some evidence of RNA segment reassortment was found. Bayesian analysis of current RVF virus genetic diversity places the most recent common ancestor of these viruses in the late 1800s, the colonial period in Africa, a time of dramatic changes in agricultural practices and introduction of nonindigenous livestock breeds. In addition to insights into the evolution and ecology of RVF virus, these genomic data also provide a foundation for the design of molecular detection assays and prototype vaccines useful in combating this important disease.


2018 ◽  
Vol 6 (26) ◽  
Author(s):  
Lowia Al-Hussinee ◽  
Kuttichantran Subramaniam ◽  
Mohammad Shamim Ahasan ◽  
Bill Keleher ◽  
Thomas B. Waltzek

Since its discovery in 2014, tilapia lake virus (TiLV) has emerged as a significant cause of mortality in tilapia cultured in Asia, Africa, and South America. Here, we report the complete genome sequence of a TiLV isolate obtained during a diagnostic investigation of an ongoing mortality event involving Nile tilapia cultured in Thailand.


Sign in / Sign up

Export Citation Format

Share Document