scholarly journals Genome-Guided Discovery of Natural Products through Multiplexed Low-Coverage Whole-Genome Sequencing of Soil Actinomycetes on Oxford Nanopore Flongle

mSystems ◽  
2021 ◽  
Author(s):  
Rahim Rajwani ◽  
Shannon I. Ohlemacher ◽  
Gengxiang Zhao ◽  
Hong-Bing Liu ◽  
Carole A. Bewley

Short-read sequencing of GC-rich genomes such as those from actinomycetes results in a fragmented genome assembly and truncated biosynthetic gene clusters (often 10 to >100 kb long), which hinders our ability to understand the biosynthetic potential of a given strain and predict the molecules that can be produced. The current study demonstrates that contiguous DNA assemblies, suitable for analysis of BGCs, can be obtained through low-coverage, multiplexed sequencing on Flongle, which provides a new low-cost workflow ($30 to 40 per strain) for sequencing actinomycete strain libraries.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1847-1847 ◽  
Author(s):  
Adam Burns ◽  
David Robert Bruce ◽  
Pauline Robbe ◽  
Adele Timbs ◽  
Basile Stamatopoulos ◽  
...  

Abstract Introduction Chronic Lymphocytic Leukaemia (CLL) is the most prevalent leukaemia in the Western world and characterised by clinical heterogeneity. IgHV mutation status, mutations in the TP53 gene and deletions of the p-arm of chromosome 17 are currently used to predict an individual patient's response to therapy and give an indication as to their long-term prognosis. Current clinical guidelines recommend screening patients prior to initial, and any subsequent, treatment. Routine clinical laboratory practices for CLL involve three separate assays, each of which are time-consuming and require significant investment in equipment. Nanopore sequencing offers a rapid, low-cost alternative, generating a full prognostic dataset on a single platform. In addition, Nanopore sequencing also promises low failure rates on degraded material such as FFPE and excellent detection of structural variants due to long read length of sequencing. Importantly, Nanopore technology does not require expensive equipment, is low-maintenance and ideal for patient-near testing, making it an attractive DNA sequencing device for low-to-middle-income countries. Methods Eleven untreated CLL samples were selected for the analysis, harbouring both mutated (n=5) and unmutated (n=6) IgHV genes, seven TP53 mutations (five missense, one stop gain and one frameshift) and two del(17p) events. Primers were designed to amplify all exons of TP53, along with the IgHV locus, and each primer included universal tails for individual sample barcoding. The resulting PCR amplicons were prepared for sequencing using a ligation sequencing kit (SQK-LSK108, Oxford Nanopore Technologies, Oxford, UK). All IgHV libraries were pooled and sequenced on one R9.4 flowcell, with the TP53 libraries pooled and sequenced on a second R9.4 flowcell. Whole genome libraries were prepared from 400ng genomic DNA for each sample using a rapid sequencing kit (SQK-RAD004, Oxford Nanopore Technologies, Oxford, UK), and each sample sequenced on individual flowcells on a MinION mk1b instrument (Oxford Nanopore Technologies, Oxford, UK). We developed a bespoke bioinformatics pipeline to detect copy-number changes, TP53 mutations and IgHV mutation status from the Nanopore sequencing data. Results were compared to short-read sequencing data obtained earlier by targeted deep sequencing (MiSeq, Illumina Inc, San Diego, CA, USA) and whole genome sequencing (HiSeq 2500, Illumina Inc, San Diego CA, USA). Results Following basecalling and adaptor trimming, the raw data were submitted to the IMGT database. In the absence of error correction, it was possible to identify the correct VH family for each sample; however the germline homology was not sufficient to differentiate between IgHVmut and IgHVunmut CLL cases. Following bio-informatic error correction and consensus building, the percentage to germline homology was the same as that obtained from short-read sequencing and nanopore sequencing also called the same productive rearrangements in all cases. A total of 77 TP53 variants were identified, including 68 in non-coding regions, and three synonymous SNVs. The remaining 6 were predicted to be functional variants (eight missense and two stop-gains) and had all been identified in early MiSeq targeted sequencing. However, the frameshift mutation was not called by the analysis pipeline, although it is present in the aligned reads. Using the low-coverage WGS data, we were able to identify del(17p) events, of 19Mb and 20Mb length, in both patients with high confidence. Conclusions Here we demonstrate that characterization of the IgHV locus in CLL cases is possible using the MinION platform, provided sufficient downstream analysis, including error correction, is applied. Furthermore, somatic SNVs in TP53 can be identified, although similar to second generation sequencing, variant calling of small insertions and deletions is more problematic. Identification of del(17p) is possible from low-coverage WGS on the MinION and is inexpensive. Our data demonstrates that Nanopore sequencing can be a viable, patient-near, low-cost alternative to established screening methods, with the potential of diagnostic implementation in resource-poor regions of the world. Disclosures Schuh: Giles, Roche, Janssen, AbbVie: Honoraria.


2020 ◽  
Author(s):  
Bailey W. Miller ◽  
Albebson L. Lim ◽  
Zhenjian Lin ◽  
Jeannie Bailey ◽  
Louis R. Barrows ◽  
...  

<i>Teredinibacter turnerae</i> is an intracellular bacterial symbiont that lives in the gills of wood-eating shipworms, where it is proposed to use antibiotics to defend itself and its animal host. Several biosynthetic gene clusters are conserved in <i>T. turnerae</i> and in their host shipworms around the world, implying that they encode the important defensive antibiotics. Here, we describe the turnercyclamycins, lipopeptide antibiotics encoded in the genomes of all sequenced T. turnerae strains. Turnercyclamycins A and B are bactericidal against challenging Gram-negative pathogens, including <i>Escherichia coli,</i> <i>Klebsiella pneumoniae</i>, and <i>Acinetobacter baumannii,</i> at 1, 2, and 8 µg/mL, respectively. Additionally, these compounds kill colistin-resistant <i>Acinetobacter </i>strains, while lacking toxicity to mammalian cells. Phenotypic screening identified the outer membrane as the likely target. By exploring the inhabitants of environments that select for the properties we require, we can harvest the fruits of evolution to discover compounds with potential to target unmet health needs. Investigating the symbionts of animals, and shipworms in particular, is a powerful example of this principle.


2018 ◽  
Author(s):  
Sarah Goldstein ◽  
Lidia Beka ◽  
Joerg Graf ◽  
Jonathan L. Klassen

AbstractBackgroundShort-read sequencing technologies have made microbial genome sequencing cheap and accessible. However, closing genomes is often costly and assembling short reads from genomes that are repetitive and/or have extreme %GC content remains challenging. Long-read, single-molecule sequencing technologies such as the Oxford Nanopore MinION have the potential to overcome these difficulties, although the best approach for harnessing their potential remains poorly evaluated.ResultsWe sequenced nine bacterial genomes spanning a wide range of GC contents using Illumina MiSeq and Oxford Nanopore MinION sequencing technologies to determine the advantages of each approach, both individually and combined. Assemblies using only MiSeq reads were highly accurate but lacked contiguity, a deficiency that was partially overcome by adding MinION reads to these assemblies. Even more contiguous genome assemblies were generated by using MinION reads for initial assembly, but these were more error-prone and required further polishing. This was especially pronounced when Illumina libraries were biased, as was the case for our strains with both high and low GC content. Increased genome contiguity dramatically improved the annotation of insertion sequences and secondary metabolite biosynthetic gene clusters, likely because long-reads can disambiguate these highly repetitive but biologically important genomic regions.ConclusionsGenome assembly using short-reads is challenged by repetitive sequences and extreme GC contents. Our results indicate that these difficulties can be largely overcome by using single-molecule, long-read sequencing technologies such as the Oxford Nanopore MinION. Using MinION reads for assembly followed by polishing with Illumina reads generated the most contiguous genomes and enabled the accurate annotation of important but difficult to sequence genomic features such as insertion sequences and secondary metabolite biosynthetic gene clusters. The combination of Oxford Nanopore and Illumina sequencing is cost effective and dramatically advances studies of microbial evolution and genome-driven drug discovery.


2020 ◽  
Author(s):  
Bailey W. Miller ◽  
Albebson L. Lim ◽  
Zhenjian Lin ◽  
Jeannie Bailey ◽  
Louis R. Barrows ◽  
...  

<i>Teredinibacter turnerae</i> is an intracellular bacterial symbiont that lives in the gills of wood-eating shipworms, where it is proposed to use antibiotics to defend itself and its animal host. Several biosynthetic gene clusters are conserved in <i>T. turnerae</i> and in their host shipworms around the world, implying that they encode the important defensive antibiotics. Here, we describe the turnercyclamycins, lipopeptide antibiotics encoded in the genomes of all sequenced T. turnerae strains. Turnercyclamycins A and B are bactericidal against challenging Gram-negative pathogens, <i>Escherichia coli,</i> <i>Klebsiella pneumoniae</i>, and <i>Acinetobacter baumannii,</i> at 1, 2, and 8 µg/mL, respectively, while lacking toxicity to mammalian cells. Phenotypic screening identified the outer membrane as the likely target. By exploring the inhabitants of environments that select for the properties we require, we can harvest the fruits of evolution to discover compounds with potential to target unmet health needs. Investigating the symbionts of animals, and shipworms in particular, is a powerful example of this principle.


2017 ◽  
Author(s):  
Emmanuel LC de los Santos ◽  
Gregory L. Challis

AbstractMotivation: The low cost of DNA sequencing has accelerated research in natural product biosynthesis allowing us to rapidly link small molecules to the clusters that produce them. However, the large amount of data means that the number of putative biosynthetic gene clusters (BGCs) far exceeds our ability to experimentally characterize them. This necessitates the need for development of further tools to analyze putative BGCs to flag those of interest for further characterization.Results: Clustertools implements a framework to aid in the characterization of putative BGCs. It does this by or-ganizing genomic information on coding sequences in a way that enables directed, hypothesis-driven queries for functional elements in close physical proximity of each other. Genomic sequence databases can be constructed in clusterTools with an interface to the NCBI Genbank and Genomes databases, or from private sequence databases. clusterTools can be used either to identify interesting BGCs from a database of putative BGCs, or on databases of genomic sequences to identify and download regions of interest in the DNA for further processing and annotation in programs such as antiSMASH. We have used clusterTools to identify putative and known biosynthetic gene clus-ters involved in bacterial polyketide alkaoloid and tetronate biosynthesis.Availability and Implementation: Clustertools is implemented in Python and is available via the AGPL. Stand-alone versions of clusterTools are available for Macintosh, Windows, and Linux upon registration (https://goo.gl/forms/QRKTkpqiA0g31IWp1). The source-code is available at https://www.github.com/emzodls/clusterArch.Supplementary information: A manual describing the Python toolkit that powers clusterTools, as well as the HMMs constructed for the tetronate search is available online.


2018 ◽  
Vol 115 (18) ◽  
pp. E4255-E4263 ◽  
Author(s):  
Xue Wang ◽  
Haibo Zhou ◽  
Hanna Chen ◽  
Xiaoshu Jing ◽  
Wentao Zheng ◽  
...  

Bacterial genomes encode numerous cryptic biosynthetic gene clusters (BGCs) that represent a largely untapped source of drugs or pesticides. Mining of the cryptic products is limited by the unavailability of streamlined genetic tools in native producers. Precise genome engineering using bacteriophage recombinases is particularly useful for genome mining. However, recombinases are usually host-specific. The genome-guided discovery of novel recombinases and their transient expression could boost cryptic BGC mining. Herein, we reported a genetic system employing Red recombinases from Burkholderiales strain DSM 7029 for efficient genome engineering in several Burkholderiales species that currently lack effective genetic tools. Using specialized recombinases-assisted in situ insertion of functional promoters, we successfully mined five cryptic nonribosomal peptide synthetase/polyketide synthase BGCs, two of which were silent. Two classes of lipopeptides, glidopeptins and rhizomides, were identified through extensive spectroscopic characterization. This recombinase expression strategy offers utility within other bacteria species, allowing bioprospecting for potentially scalable discovery of novel metabolites with attractive bioactivities.


2020 ◽  
Author(s):  
Bailey W. Miller ◽  
Albebson L. Lim ◽  
Zhenjian Lin ◽  
Jeannie Bailey ◽  
Louis R. Barrows ◽  
...  

<i>Teredinibacter turnerae</i> is an intracellular bacterial symbiont that lives in the gills of wood-eating shipworms, where it is proposed to use antibiotics to defend itself and its animal host. Several biosynthetic gene clusters are conserved in <i>T. turnerae</i> and in their host shipworms around the world, implying that they encode the important defensive antibiotics. Here, we describe the turnercyclamycins, lipopeptide antibiotics encoded in the genomes of all sequenced T. turnerae strains. Turnercyclamycins A and B are bactericidal against challenging Gram-negative pathogens, including <i>Escherichia coli,</i> <i>Klebsiella pneumoniae</i>, and <i>Acinetobacter baumannii,</i> at 1, 2, and 8 µg/mL, respectively. Additionally, these compounds kill colistin-resistant <i>Acinetobacter </i>strains, while lacking toxicity to mammalian cells. Phenotypic screening identified the outer membrane as the likely target. By exploring the inhabitants of environments that select for the properties we require, we can harvest the fruits of evolution to discover compounds with potential to target unmet health needs. Investigating the symbionts of animals, and shipworms in particular, is a powerful example of this principle.


Author(s):  
Patrick Videau ◽  
Kaitlyn Wells ◽  
Arun Singh ◽  
Jessie Eiting ◽  
Philip Proteau ◽  
...  

Cyanobacteria are prolific producers of natural products and genome mining has shown that many orphan biosynthetic gene clusters can be found in sequenced cyanobacterial genomes. New tools and methodologies are required to investigate these biosynthetic gene clusters and here we present the use of <i>Anabaena </i>sp. strain PCC 7120 as a host for combinatorial biosynthesis of natural products using the indolactam natural products (lyngbyatoxin A, pendolmycin, and teleocidin B-4) as a test case. We were able to successfully produce all three compounds using codon optimized genes from Actinobacteria. We also introduce a new plasmid backbone based on the native <i>Anabaena</i>7120 plasmid pCC7120ζ and show that production of teleocidin B-4 can be accomplished using a two-plasmid system, which can be introduced by co-conjugation.


Sign in / Sign up

Export Citation Format

Share Document