RECONSTRUCTED ANCESTRAL ENZYMES SUGGEST THAT EARTH'S PHOTIC-ZONE TEMPERATURE MARKEDLY DECREASED OVER GEOLOGIC TIME

Author(s):  
Amanda Garcia ◽  
◽  
J. William Schopf ◽  
Shin-ichi Yokobori ◽  
Satoshi Akanuma ◽  
...  
2021 ◽  
Vol 9 ◽  
Author(s):  
B. J. Kreakie ◽  
S. D. Shivers ◽  
J. W. Hollister ◽  
W. B. Milstead

As the average global air temperature increases, lake surface temperatures are also increasing globally. The influence of this increased temperature is known to impact lake ecosystems across local to broad scales. Warming lake temperature is linked to disruptions in trophic linkages, changes in thermal stratification, and cyanobacteria bloom dynamics. Thus, comprehending broad trends in lake temperature is important to understanding the changing ecology of lakes and the potential human health impacts of these changes. To help address this, we developed a simple yet robust random forest model of lake photic zone temperature using the 2007 and 2012 United States Environmental Protection Agency’s National Lakes Assessment data for the conterminous United States. The final model has a root mean square error of 1.48°C and an adjusted R2 of 0.88; the final model included 2,282 total samples. The sampling date, that day’s average ambient air temperature and longitude are the most important variables impacting the final model’s accuracy. The final model also included 30-days average temperature, elevation, latitude, lake area, and lake shoreline length. Given the importance of temperature to a lake ecosystem, this model can be a valuable tool for researchers and lake resource managers. Daily predicted lake photic zone temperature for all lakes in the conterminous US can now be estimated based on basic ambient temperature and location information.


Author(s):  
Joseph Graham ◽  
William Newman ◽  
John Stacy
Keyword(s):  

2010 ◽  
Vol 12 (2) ◽  
pp. 194-199 ◽  
Author(s):  
Shaochun DONG ◽  
Hongwei YIN ◽  
Gang XU

Author(s):  
Daniel R. Hummer ◽  
◽  
Robert M. Hazen ◽  
Xiaogang Ma ◽  
Joshua J. Golden ◽  
...  

2018 ◽  
Author(s):  
Lyndsey Farrar ◽  
◽  
Erin Graves ◽  
Elizabeth Petsios ◽  
Roger W. Portell ◽  
...  
Keyword(s):  

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Roxana T. Shafiee ◽  
Poppy J. Diver ◽  
Joseph T. Snow ◽  
Qiong Zhang ◽  
Rosalind E. M. Rickaby

AbstractAmmonia oxidation by archaea and bacteria (AOA and AOB), is the first step of nitrification in the oceans. As AOA have an ammonium affinity 200-fold higher than AOB isolates, the chemical niche allowing AOB to persist in the oligotrophic ocean remains unclear. Here we show that marine isolates, Nitrosopumilus maritimus strain SCM1 (AOA) and Nitrosococcus oceani strain C-107 (AOB) have contrasting physiologies in response to the trace metals iron (Fe) and copper (Cu), holding potential implications for their niche separation in the oceans. A greater affinity for unchelated Fe may allow AOB to inhabit shallower, euphotic waters where ammonium supply is high, but competition for Fe is rife. In contrast to AOB, AOA isolates have a greater affinity and toxicity threshold for unchelated Cu providing additional explanation to the greater success of AOA in the marine environment where Cu availability can be highly variable. Using comparative genomics, we predict that the proteomic and metal transport basis giving rise to contrasting physiologies in isolates is widespread across phylogenetically diverse marine AOA and AOB that are not yet available in pure culture. Our results develop the testable hypothesis that ammonia oxidation may be limited by Cu in large tracts of the open ocean and suggest a relatively earlier emergence of AOB than AOA when considered in the context of evolving trace metal availabilities over geologic time.


Sign in / Sign up

Export Citation Format

Share Document