ammonia oxidising archaea
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 8)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Jun Zhao ◽  
Baozhan Wang ◽  
Xue Zhou ◽  
Mohammad Saiful Alam ◽  
Jianbo Fan ◽  
...  

AbstractAmmonia oxidising archaea (AOA) are ecologically important nitrifiers in acidic agricultural soils. Two AOA phylogenetic clades, belonging to order-level lineages of Nitrososphaerales (clade C11; also classified as NS-Gamma-2.3.2) and family-level lineage of Candidatus Nitrosotaleaceae (clade C14; NT-Alpha-1.1.1), usually dominate AOA population in low pH soils. This study aimed to investigate the effect of different fertilisation histories on community composition and activity of acidophilic AOA in soils. High-throughput sequencing of ammonia monooxygenase gene (amoA) was performed on six low pH agricultural plots originating from the same soil but amended with different types of fertilisers for over 20 years and nitrification rates in those soils were measured. In these fertilised acidic soils, nitrification was likely dominated by Nitrososphaerales AOA and ammonia-oxidising bacteria, while Ca. Nitrosotaleaceae AOA activity was non-significant. Within Nitrososphaerales AOA, community composition differed based on the fertilisation history, with Nitrososphaerales C11 only representing a low proportion of the community. This study revealed that long-term soil fertilisation selects for different acidophilic nitrifier communities, potentially through soil pH change or through direct effect of nitrogen, potassium and phosphorus. Comparative community composition among the differently fertilised soils also highlighted the existence of AOA phylotypes with different levels of stability to environmental changes, contributing to the understanding of high AOA diversity maintenance in terrestrial ecosystems.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Roxana T. Shafiee ◽  
Poppy J. Diver ◽  
Joseph T. Snow ◽  
Qiong Zhang ◽  
Rosalind E. M. Rickaby

AbstractAmmonia oxidation by archaea and bacteria (AOA and AOB), is the first step of nitrification in the oceans. As AOA have an ammonium affinity 200-fold higher than AOB isolates, the chemical niche allowing AOB to persist in the oligotrophic ocean remains unclear. Here we show that marine isolates, Nitrosopumilus maritimus strain SCM1 (AOA) and Nitrosococcus oceani strain C-107 (AOB) have contrasting physiologies in response to the trace metals iron (Fe) and copper (Cu), holding potential implications for their niche separation in the oceans. A greater affinity for unchelated Fe may allow AOB to inhabit shallower, euphotic waters where ammonium supply is high, but competition for Fe is rife. In contrast to AOB, AOA isolates have a greater affinity and toxicity threshold for unchelated Cu providing additional explanation to the greater success of AOA in the marine environment where Cu availability can be highly variable. Using comparative genomics, we predict that the proteomic and metal transport basis giving rise to contrasting physiologies in isolates is widespread across phylogenetically diverse marine AOA and AOB that are not yet available in pure culture. Our results develop the testable hypothesis that ammonia oxidation may be limited by Cu in large tracts of the open ocean and suggest a relatively earlier emergence of AOB than AOA when considered in the context of evolving trace metal availabilities over geologic time.


Author(s):  
Jasmeet Kaur-Bhambra ◽  
Daniel L. R. Wardak ◽  
James I. Prosser ◽  
Cécile Gubry-Rangin

AbstractNitrification is a major process within the nitrogen (N) cycle leading to global losses of N, including fertiliser N, from natural and agricultural systems and producing significant nitrous oxide emissions. One strategy for the mitigation of these losses involves nitrification inhibition by plant-derived biological nitrification inhibitors (BNIs). Cultivation-based studies of BNIs, including screening for new compounds, have predominantly investigated inhibition of a single ammonia-oxidising bacterium (AOB), Nitrosomonas europaea, even though ammonia oxidation in soil is usually dominated by ammonia-oxidising archaea (AOA), especially in acidic soils, and AOB Nitrosospira sp., rather than Nitrosomonas, in fertilised soils. This study aimed to assess the sensitivity of ammonia oxidation by a range of AOA and AOB pure cultures to BNIs produced by plant roots (methyl 3-(4-hydroxyphenyl) propionate, sakuranetin and 1,9-decanediol) and shoots (linoleic acid, linolenic acid and methyl linoleate). AOA were generally more sensitive to BNIs than AOB, and sensitivity was greater to BNIs produced by shoots than those produced by roots. Sensitivity also varied within AOA and AOB cultures and between different BNIs. In general, N. europaea was not a good indicator of BNI inhibition, and findings therefore highlight the limitations of use of a single bioassay strain and suggest the use of a broader range of strains that are more representative of natural soil communities.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Paul O. Sheridan ◽  
◽  
Sebastien Raguideau ◽  
Christopher Quince ◽  
Jennifer Holden ◽  
...  

Abstract Ammonia-oxidising archaea of the phylum Thaumarchaeota are important organisms in the nitrogen cycle, but the mechanisms driving their radiation into diverse ecosystems remain underexplored. Here, existing thaumarchaeotal genomes are complemented with 12 genomes belonging to the previously under-sampled Nitrososphaerales to investigate the impact of lateral gene transfer (LGT), gene duplication and loss across thaumarchaeotal evolution. We reveal a major role for gene duplication in driving genome expansion subsequent to early LGT. In particular, two large LGT events are identified into Nitrososphaerales and the fate of these gene families is highly lineage-specific, being lost in some descendant lineages, but undergoing extensive duplication in others, suggesting niche-specific roles. Notably, some genes involved in carbohydrate transport or coenzyme metabolism were duplicated, likely facilitating niche specialisation in soils and sediments. Overall, our results suggest that LGT followed by gene duplication drives Nitrososphaerales evolution, highlighting a previously under-appreciated mechanism of genome expansion in archaea.


2020 ◽  
Vol 141 ◽  
pp. 107673 ◽  
Author(s):  
Jun Zhao ◽  
Marcus O. Bello ◽  
Yiyu Meng ◽  
James I. Prosser ◽  
Cécile Gubry-Rangin

2019 ◽  
Vol 1 (1A) ◽  
Author(s):  
Samuel M.M. Prudence ◽  
Sarah Worsley ◽  
Lucas Balis ◽  
J. Colin Murrell ◽  
Laura Lehtovirta-Morley ◽  
...  

2019 ◽  
Vol 129 ◽  
pp. 184-190 ◽  
Author(s):  
Marcus O. Bello ◽  
Cécile Thion ◽  
Cécile Gubry-Rangin ◽  
James I. Prosser

2018 ◽  
Vol 2 (4) ◽  
pp. 619-628 ◽  
Author(s):  
Cécile Gubry-Rangin ◽  
William Williams ◽  
James I. Prosser

Ammonia-oxidising archaea (AOA) form a phylogenetic group within the phylum Thaumarchaeota and are of ecological significance due to their role in nitrification, an important biogeochemical process. Previous research has provided information on their ecosystem role and potential physiological characteristics, for example, through analyses of their environmental distribution, ecological adaptation and evolutionary history. However, most AOA diversity, assessed using several environmental marker genes, is not represented in laboratory cultures, with consequent gaps in knowledge of their physiology and evolution. The present study critically reviews existing and developing approaches for the assessment of AOA function and diversity and their potential to provide a deeper understanding of these ecologically important, but understudied microorganisms.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Ricardo J. Eloy Alves ◽  
Bui Quang Minh ◽  
Tim Urich ◽  
Arndt von Haeseler ◽  
Christa Schleper

Sign in / Sign up

Export Citation Format

Share Document