METHANE ADSORPTION AND RELEASE MECHANISM IN OVER-MATURE KEROGEN BY MOLECULAR MODELING

2016 ◽  
Author(s):  
Tuan A. Ho ◽  
◽  
Louise J. Criscenti ◽  
Yifeng Wang
Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3764 ◽  
Author(s):  
Saad Alafnan ◽  
Theis Solling ◽  
Mohamed Mahmoud

The presence of kerogen in source rocks gives rise to a plethora of potential gas storage mechanisms. Proper estimation of the gas reserve requires knowledge of the quantities of free and adsorbed gas in rock pores and kerogen. Traditional methods of reserve estimation such as the volumetric and material balance approaches are insufficient because they do not consider both the free and adsorbed gas compartments present in kerogens. Modified versions of these equations are based on adding terms to account for hydrocarbons stored in kerogen. None of the existing models considered the effect of kerogen maturing on methane gas adsorption. In this work, a molecular modeling was employed to explore how thermal maturity impacts gas adsorption in kerogen. Four different macromolecules of kerogen were included to mimic kerogens of different maturity levels; these were folded to more closely resemble the nanoporous kerogen structures of source rocks. These structures form the basis of the modeling necessary to assess the adsorption capacity as a function of the structure. The number of double bonds plus the number and type of heteroatoms (O, S, and N) were found to influence the final configuration of the kerogen structures, and hence their capacity to host methane molecules. The degree of aromaticity increased with the maturity level within the same kerogen type. The fraction of aromaticity gives rise to the polarity. We present an empirical mathematical relationship that makes possible the estimation of the adsorption capacity of kerogen based on the degree of polarity. Variations in kerogen adsorption capacity have significant implications on the reservoir scale. The general trend obtained from the molecular modeling was found to be consistent with experimental measurements done on actual kerogen samples. Shale samples with different kerogen content and with different maturity showed that shales with immature kerogen have small methane adsorption capacity compared to shales with mature kerogen. In this study, it is shown for the first time that the key factor to control natural gas adsorption is the kerogen maturity not the kerogen content.


2013 ◽  
Vol 25 (8) ◽  
pp. 5099-5102
Author(s):  
Ren-Hong Chen ◽  
Guo-Ying Zhong ◽  
Xiu-Fang Wang

1998 ◽  
Vol 95 (2) ◽  
pp. 357-365 ◽  
Author(s):  
C. Saucier ◽  
I. Pianet ◽  
M. Laguerre ◽  
Y. Glories

1991 ◽  
Vol 88 ◽  
pp. 2497-2503 ◽  
Author(s):  
DJ Vanderveken ◽  
G Baudoux ◽  
F Durant ◽  
DP Vercauteren
Keyword(s):  

2012 ◽  
Vol 1 (8) ◽  
pp. 186 ◽  
Author(s):  
Urmi Das ◽  
Mohammad Salim Hossain

<p>Sustained release Carvedilol matrix tablets constituting Kollidon SR were developed in this study in an attempt to investigate the effect of release modifiers on the release profile of Carvedilol from matrix. Three matrix tablet formulations were prepared by direct compression of Kollidon SR in combination with release modifier (HPMC and Microcrystalline Cellulose) and magnesium stearate. Tablets containing only Kollidon SR with the active ingredient demonstrated a rapid rate of drug release. Incorporation of HPMC in the matrix tablet prolonged the release of drug but incorporation of Microcrystalline Cellulose showed superimposable release pattern with an initial burst effect as confirmed by mean dissolution time and Higuchi release rate data. After 7 hours of dissolution, Carvedilol release from the matrix systems were 91.42%, 83.41%, from formulation F1 and F2 respectively. Formulation F3 exhibited 100 % release at 4 hours. All the tablet formulations showed acceptable pharmaco-technical properties and complied with the in-house specifications for tablet weight variation, friability, hardness, thickness, and diameter. Prepared tablets also showed sustained release property for carvedilol. The drug release mechanism from the matrix tablets of F1 and F2 was found to be followed by Fickian and F3 by Non-Fickian mechanism.</p><p>DOI: <a href="http://dx.doi.org/10.3329/icpj.v1i8.11095">http://dx.doi.org/10.3329/icpj.v1i8.11095</a></p> <p>International Current Pharmaceutical Journal 2012, 1(8): 186-192</p>


Sign in / Sign up

Export Citation Format

Share Document