LATE SILURIAN/EARLY DEVONIAN GENTLE TECTONIC DEFORMATION IN THE CALEDONIAN FORELAND BASIN (EAST EUROPEAN CRATON, NORTHERN POLAND)

2017 ◽  
Author(s):  
Michał Wyglądała ◽  
◽  
Andrzej Konon ◽  
Barbara Rybak-Ostrowska ◽  
Anna Haluch
2015 ◽  
Vol 63 (2) ◽  
pp. 352-373 ◽  
Author(s):  
Marek Grad ◽  
Marcin Polkowski ◽  
Monika Wilde-Piorko ◽  
Jerzy Suchcicki ◽  
Tadeusz Arant

2020 ◽  
Vol 220 (3) ◽  
pp. 2105-2118 ◽  
Author(s):  
Laura Petrescu ◽  
Graham Stuart ◽  
Gregory Houseman ◽  
Ian Bastow

SUMMARY Since the Mesozoic, central and eastern European tectonics have been dominated by the closure of the Tethyan Ocean as the African and European plates collided. In the Miocene, the edge of the East European Craton and Moesian Platform were reworked in collision during the Carpathian orogeny and lithospheric extension formed the Pannonian Basin. To investigate the mantle deformation signatures associated with this complex collisional-extensional system, we carry out SKS splitting analysis at 123 broad-band seismic stations in the region. We compare our measurements with estimates of lithospheric thickness and recent seismic tomography models to test for correlation with mantle heterogeneities. Reviewing splitting delay times in light of xenolith measurements of anisotropy yields estimates of anisotropic layer thickness. Fast polarization directions are mostly NW–SE oriented across the seismically slow West Carpathians and Pannonian Basin and are independent of geological boundaries, absolute plate motion direction or an expected palaeo-slab roll-back path. Instead, they are systematically orthogonal to maximum stress directions, implying that the indenting Adria Plate, the leading deformational force in Central Europe, reset the upper-mantle mineral fabric in the past 5 Ma beneath the Pannonian Basin, overprinting the anisotropic signature of earlier tectonic events. Towards the east, fast polarization directions are perpendicular to steep gradients of lithospheric thickness and align along the edges of fast seismic anomalies beneath the Precambrian-aged Moesian Platform in the South Carpathians and the East European Craton, supporting the idea that craton roots exert a strong influence on the surrounding mantle flow. Within the Moesian Platform, SKS measurements become more variable with Fresnel zone arguments indicating a shallow fossil lithospheric source of anisotropy likely caused by older tectonic deformation frozen in the Precambrian. In the Southeast Carpathian corner, in the Vrancea Seismic Zone, a lithospheric fragment that sinks into the mantle is sandwiched between two slow anomalies, but smaller SKS delay times reveal weaker anisotropy occurs mainly to the NW side, consistent with asymmetric upwelling adjacent to a slab, slower mantle velocities and recent volcanism.


Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 127
Author(s):  
Nilesh C. Dixit ◽  
Catherine Hanks

Central Interior Alaska is one of the most seismically active regions in North America, exhibiting a high concentration of intraplate earthquakes approximately 700 km away from the southern Alaska subduction zone. Seismological evidence suggests that intraplate seismicity in the region is not uniformly distributed, but concentrated in several discrete seismic zones, including the Nenana basin and the adjacent Tanana basin. Although the location and magnitude of the seismic activity in both basins are well defined by a network of seismic stations in the region, the tectonic controls on these intraplate earthquakes and the heterogeneous nature of Alaska’s continental interior remain poorly understood. We investigated the crustal structure of the Nenana and Tanana basins using available seismic reflection, aeromagnetic and gravity anomaly data, supplemented by geophysical well logs and outcrop data. We developed nine new two-dimensional forward models to delineate internal geometries and the crustal structure of Alaska’s interior. The results of our study demonstrates a strong crustal heterogeneity beneath both basins. The Tanana basin is a relatively shallow (up to 2 km) asymmetrical foreland basin with its southern, deeper side controlled by the northern foothills of the Central Alaska Range. Northeast-trending left lateral strike-slip faults within the Tanana basin are interpreted as a zone of clockwise crustal block rotation. The Nenana basin has a fundamentally different geometry. It is a deep (up to 8 km), narrow transtensional pull-apart basin that is deforming along the left-lateral Minto Fault. This study identifies two distinct modes of current tectonic deformation in Central Interior Alaska and provides a basis for modeling the interplay between intraplate stress fields and major structural features that potentially influence the generation of intraplate earthquakes in the region.


2016 ◽  
Vol 71 (1) ◽  
pp. 8-17 ◽  
Author(s):  
N. V. Lubnina ◽  
A. M. Pasenko ◽  
M. A. Novikova ◽  
A. Yu. Bubnov

Sign in / Sign up

Export Citation Format

Share Document