scholarly journals Review: Imaging East European Craton margin in Northern Poland using extended-correlation processing applied to regional reflection seismic profiles

2019 ◽  
Author(s):  
Anonymous
2019 ◽  
Author(s):  
Miłosz Mężyk ◽  
Michał Malinowski ◽  
Stanisław Mazur

Abstract. In NE Poland, the Eastern European Craton (EEC) crust of the Fennoscandian affinity is concealed under a Phanerozoic platform cover and penetrated by the sparse deep research wells. Most of the inferences regarding its structure rely on geophysical data. Until recently, this area was covered only by the refraction/wide-angle reflection (WARR) profiles, which show a relatively simple crustal structure with a typical cratonic 3-layer crust. ION Geophysical PolandSPAN™ regional seismic program, acquired over the marginal part of the EEC in Poland, offered a unique opportunity to derive a detailed image of the deeper crust. Here, we apply extended correlation processing to a subset (~950 km) of the PolandSPAN™ dataset located in NE Poland, which enabled us to extend the nominal record length of the acquired data from 12 to 22 s (~60 km depth). Our new processing revealed reflectivity patterns, that we primarily associate with the Paleoproterozoic crust formation during the Svekofennian (Svekobaltic) orogeny and which are similar to what was observed along the BABEL and FIRE profiles in the Baltic Sea and Finland, respectively. We propose a mid- to lower-crustal lateral flow model to explain the occurrence of two sets of structures that can be collectively interpreted as kilometre-scale S-C' shear zones. The structures define a penetrative deformation fabric invoking ductile extension of hot orogenic crust. Localized reactivation of these structures provided conduits for subsequent emplacement of gabbroic magma that produced a Mesoproterozoic anorthosite-mangerite-charnockite-granite (AMCG) suite in NE Poland. Delamination of overthickened orogenic lithosphere may have accounted for magmatic underplating and fractionation into the AMCG plutons. We also found sub-Moho dipping mantle reflectivity, which we tentatively explain as a signature of the crustal accretion during the Svekofennian orogeny. Later tectonic phases (e.g. Ediacaran rifting, Caledonian orogeny) did not leave a clear signature in the deeper crust, however, some of the subhorizontal reflectors below the basement, observed in the vicinity of the AMCG Mazury complex, can be alternatively linked with lower Carboniferous magmatism.


2015 ◽  
Vol 63 (2) ◽  
pp. 352-373 ◽  
Author(s):  
Marek Grad ◽  
Marcin Polkowski ◽  
Monika Wilde-Piorko ◽  
Jerzy Suchcicki ◽  
Tadeusz Arant

2016 ◽  
Vol 71 (1) ◽  
pp. 8-17 ◽  
Author(s):  
N. V. Lubnina ◽  
A. M. Pasenko ◽  
M. A. Novikova ◽  
A. Yu. Bubnov

2020 ◽  
Author(s):  
Mariusz Majdanski ◽  
Artur Marciniak ◽  
Bartosz Owoc ◽  
Wojciech Dobiński ◽  
Tomasz Wawrzyniak ◽  
...  

<p>The Arctic regions are the place of the fastest observed climate change. One of the indicators of such evolution are changes occurring in the glaciers and the subsurface in the permafrost. The active layer of the permafrost as the shallowest one is well measured by multiple geophysical techniques and in-situ measurements.</p><p>Two high arctic expeditions have been organized to use seismic methods to recognize the shape of the permafrost in two seasons: with the unfrozen ground (October 2017) and frozen ground (April 2018). Two seismic profiles have been designed to visualize the shape of permafrost between the sea coast and the slope of the mountain, and at the front of a retreating glacier. For measurements, a stand-alone seismic stations has been used with accelerated weight drop with in-house modifications and timing system. Seismic profiles were acquired in a time-lapse manner and were supported with GPR and ERT measurements, and continuous temperature monitoring in shallow boreholes.</p><p>Joint interpretation of seismic and auxiliary data using Multichannel analysis of surface waves, First arrival travel-time tomography and Reflection imaging show clear seasonal changes affecting the active layer where P-wave velocities are changing from 3500 to 5200 m/s. This confirms the laboratory measurements showing doubling the seismic velocity of water-filled high-porosity rocks when frozen. The same laboratory study shows significant (>10%) increase of velocity in frozen low porosity rocks, that should be easily visible in seismic.</p><p>In the reflection seismic processing, the most critical part was a detailed front mute to eliminate refracted arrivals spoiling wide-angle near-surface reflections. Those long offset refractions were however used to estimate near-surface velocities further used in reflection processing. In the reflection seismic image, a horizontal reflection was traced at the depth of 120 m at the sea coast deepening to the depth of 300 m near the mountain.</p><p>Additionally, an optimal set of seismic parameters has been established, clearly showing a significantly higher signal to noise ratio in case of frozen ground conditions even with the snow cover. Moreover, logistics in the frozen conditions are much easier and a lack of surface waves recorded in the snow buried geophones makes the seismic processing simpler.</p><p>Acknowledgements               </p><p>This research was funded by the National Science Centre, Poland (NCN) Grant UMO-2015/21/B/ST10/02509.</p>


1985 ◽  
Author(s):  
C J Yorath ◽  
R M Clowes ◽  
A G Green ◽  
A Sutherland-Brown ◽  
M T Brandon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document