CRUSTAL CONTAMINATION IN THE TERMINAL STAGES OF THE KEWEENAWAN LARGE IGNEOUS PROVINCE: GEOCHEMICAL EVIDENCE FROM THE PORCUPINE MOUNTAINS

2018 ◽  
Author(s):  
Christopher Svoboda ◽  
◽  
Tyrone O. Rooney ◽  
Andrew LaVigne ◽  
Eric Brown ◽  
...  
Author(s):  
Sheng-Sheng Chen ◽  
Wei-Ming Fan ◽  
Ren-Deng Shi ◽  
Ji-Feng Xu ◽  
Yong-Min Liu

Abstract The Kerguelen large igneous province (LIP) has been related to mantle plume activity since at least 120 Ma. There are some older (147–130 Ma) magmatic provinces on circum-eastern Gondwana, but the relationship between these provinces and the Kerguelen mantle plume remains controversial. Here we present petrological, geochronological, geochemical, and Sr–Nd–Hf–Pb–Os isotopic data for high-Ti mafic rocks from two localities (Cuona and Jiangzi) in the eastern Tethyan Himalaya igneous province (147–130 Ma). Zircon grains from these two localities yielded concordant weighted mean 206Pb/238U ages of 137.25 ± 0.98 and 131.28 ± 0.78 Ma (2σ), respectively. The analyzed mafic rocks are enriched in high field strength elements and have positive Nb–Ta anomalies relative to Th and La, which have ocean island basalt-like characteristics. The Cuona basalts were generated by low degrees of melting (3–5%) of garnet lherzolites (3–5 vol.% garnet), and elsewhere the Jiangzi diabases were formed by relatively lower degrees of melting (1–3%) of garnet lherzolite (1–5 vol.% garnet). The highly radiogenic Os and Pb isotopic compositions of the Jiangzi diabases were produced by crustal contamination, but the Cuona basalts experienced the least crustal contamination given their relatively low γOs(t), 206Pb/204Pbi, 207Pb/204Pbi, and 208Pb/204Pbi values. Major and trace element geochemical and Sr–Nd–Hf–Pb–Os isotope data for the Cuona basalts are similar to products of the Kerguelen mantle plume head. Together with high mantle potential temperatures (>1500°C), this suggests that the eastern Tethyan Himalaya igneous province (147–130 Ma) was an early magmatic product of the Kerguelen plume. A mantle plume initiation model can explain the temporal and spatial evolution of the Kerguelen LIP, and pre-continental break-up played a role in the breakup of eastern Gondwana, given the >10 Myr between initial mantle plume activity (147–130 Ma) and continental break-up (132–130 Ma). Like studies of Re-Os isotopes in other LIPs, the increasing amount of crustal assimilation with distance from the plume stem can explain the variations in radiogenic Os.


2014 ◽  
Vol 26 (4) ◽  
pp. 389-399 ◽  
Author(s):  
Teal R. Riley ◽  
Ian L. Millar

AbstractThe recognition of a Mesoproterozoic large igneous province (LIP) across large parts of southern Africa has been strengthened by recent geochronology, geochemistry and petrology. The c. 1100 Ma Umkondo province has been recognized across parts of Botswana, Zimbabwe, South Africa and Mozambique where tholeiitic sills, dykes and rare lava flows have been correlated into a single magmatic province emplaced in the interval 1108–1112 Ma. The extension of the province into the Dronning Maud Land region of Antarctica has been suggested by several workers, but detailed analyses of geochemistry and petrogenesis are lacking, as are comparative studies. This study investigates 25 dykes and sills of the Borgmassivet intrusions which include several of the major diorite sills of the province, up to 300 m in thickness. The dykes and sills are also considered to be c. 1100 Ma and they were emplaced, in part, synchronously with the Ritscherflya Supergroup sedimentary sequence. The Borgmassivet intrusions are characterized by geochemical signatures that suggest the magmas were either extensively contaminated by continental crust or derived from an enriched lithospheric mantle source, where the enrichment was related to earlier subduction. The limited geochemical range of the Borgmassivet and Umkondo intrusions are probably not consistent with significant levels of crustal contamination. Furthermore, the trace element ratios indicate a source in the sub-lithospheric mantle, followed by gabbroic fractionation and interaction with lithospheric wall rocks.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1030
Author(s):  
Zhi Shang ◽  
Yongqing Chen

The Gejiu Anisian alkaline basalts (GAAB), distributed in the southern part of the Emeishan large igneous province (ELIP), are crucial to understand the tectonomagmatic activity during the Triassic. Geochronological, geochemical, and Sr-Nd-Pb isotopic analyses were systematically applied to explore the origin, petrogenesis, and tectonic setting of the GAAB, and how they relate to the ELIP. Zircon U-Pb dating set the eruption date at 244 Ma. Most of the samples belonged to alkaline basalts and had high TiO2 (2.14–3.23 wt.%) and MgO (4.43–19.58 wt.%) contents. Large ion lithophile elements (LILEs) were enriched relative to high field strength elements (HFSEs). The rare earth elements (REEs) and trace element signatures in the normalized diagrams were similar to oceanic island basalts (OIB) and Emeishan high-Ti basalts. These samples had consistent Sr-Nd isotope compositions: the initial 87Sr/86Sr values ranged from 0.7044 to 0.7048 and εNd(t) = 3.25–4.92. The Pb isotopes were more complex, the (206Pb/204Pb)t, (207Pb/204Pb)t, (208Pb/204Pb)t ratios were 17.493–18.197, 15.530–15.722, and 37.713–38.853, respectively. Our results indicate that the GAAB originated from the deeper enriched mantle with 5% to 15% partial melting of garnet lherzolite and a segregation depth of 2 to 4 GPa (60–120 km). During the formation of the GAAB, clinopyroxene and Ti-Fe oxides were fractionally crystallized with insignificant crustal contamination. The GAAB were formed in a extensional regime that was related to the Gejiu-Napo rift event in the Triassic.


2019 ◽  
Vol 60 (6) ◽  
pp. 1119-1134 ◽  
Author(s):  
Jyoti Chandra ◽  
Debajyoti Paul ◽  
Andreas Stracke ◽  
François Chabaux ◽  
Mathieu Granet

Abstract There are disparate views about the origin of global rift- or plume-related carbonatites. The Amba Dongar carbonatite complex, Gujarat, India, which intruded into the basalts of the Deccan Large Igneous Province (LIP), is a typical example. On the basis of new comprehensive major and trace element and Sr–Nd–Pb isotope data, we propose that low-degree primary carbonated melts from off-center of the Deccan–Réunion mantle plume migrate upwards and metasomatize part of the subcontinental lithospheric mantle (SCLM). Low-degree partial melting (∼2%) of this metasomatized SCLM source generates a parental carbonated silicate magma, which becomes contaminated with the local Archean basement during its ascent. Calcite globules in a nephelinite from Amba Dongar provide evidence that the carbonatites originated by liquid immiscibility from a parental carbonated silicate magma. Liquid immiscibility at crustal depths produces two chemically distinct, but isotopically similar magmas: the carbonatites (20% by volume) and nephelinites (80% by volume). Owing to their low heat capacity, the carbonatite melts solidified as thin carbonate veins at crustal depths. Secondary melting of these carbonate-rich veins during subsequent rifting generated the carbonatites and ferrocarbonatites now exposed at Amba Dongar. Carbonatites, if formed by liquid immiscibility from carbonated silicate magmas, can inherit a wide range of isotopic signatures that result from crustal contamination of their parental carbonated silicate magmas. In rift or plume-related settings, they can, therefore, display a much larger range of isotope signatures than their original asthenosphere or mantle plume source.


Sign in / Sign up

Export Citation Format

Share Document