carbonatite complex
Recently Published Documents


TOTAL DOCUMENTS

276
(FIVE YEARS 65)

H-INDEX

28
(FIVE YEARS 5)

2021 ◽  
Vol 13 (4) ◽  
pp. 1214-1224
Author(s):  
P. Gangatharan ◽  
K. Anbarasu ◽  
M. Satyanarayanan

The present study mainly focused on understanding the magmatic origin and petrogenesis characterization based on the Petrography, major, trace and Rare Earth Element (REE) signatures in the alkaline syenite from Pakkanadu alkaline carbonatite complex. The alkaline plutons from South Indian granulite terrain are intruded along with Archaean epidote-hornblende gneisses. The study area was carbonatite complexes of Tamil Nadu and is characterized by a group of rock associations Carbonatite-Syenite-Pyroxenite - Dunite. From Harker various patterns Pakkanadu alkaline complex syenite showed increasing trends of SiO2, Al2O3, Na2O + K2O opposite to decreasing order of CaO, Fe2O3, MgO, TiO2, P2O5 and MnO trend, suggest fractionation of clinopyroxene, hornblende, sphene, apatite and oxide minerals and feldspar that ruled the fractionation. The concentration of trace elements enriched in Large Ion lithophile elements  (LILE) (Ba, Sr, and Rb) elements and High Field Strength Elements (HFSEs) indicated that the dyke intrusion by differentiation of magma from a mantle source. Rare earth element (REE) distribution of Light rare earth element (LREE) enriched and High rare earth element (HREE) depleted pattern show strongly fractionated pattern with moderate Eu anomalies. Plots of tectonic discrimination diagrams of Pakkanadu samples fall in the field of syn-COLG field to the VAG syn- COLG field.     For the first time, this type of study was carried out in the study region in a detailed manner. The present study significantly exposed the petrography, petrogenesis and magmatic origin process in the Pakkanadu alkaline carbonatite complex. 


2021 ◽  
Vol 12 (4) ◽  
pp. 865-882
Author(s):  
I. R. Prokopyev ◽  
A. G. Doroshkevich ◽  
A. V. Malyutina ◽  
A. E. Starikova ◽  
A. V. Ponomarchuk ◽  
...  

Lithos ◽  
2021 ◽  
pp. 106497
Author(s):  
Asad Khan ◽  
Shah Faisal ◽  
Kyle P. Larson ◽  
Delores M. Robinson ◽  
Zaheen Ullah ◽  
...  

Petrology ◽  
2021 ◽  
Vol 29 (5) ◽  
pp. 475-501
Author(s):  
E. V. Sharkov ◽  
A. V. Chistyakov ◽  
M. M. Bogina ◽  
V. V. Shchiptsov ◽  
B. V. Belyatsky ◽  
...  
Keyword(s):  

Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 756
Author(s):  
Amiya K. Samal ◽  
Rajesh K. Srivastava ◽  
Dewashish Upadhyay

In situ major, trace and rare-earth element composition of Ti-rich garnets from Ambadungar-Saidivasan alkaline carbonatite complex (ASACC) are presented to constrain its likely genesis. The garnets are characterized by high andradite (42.7–57.3), schorolomite (22.0–31.0), and morimotoite (15.6–26.5) end members. No distinct chemical zonation is noticed except for minor variations in Ti content. The garnets are enriched in LREE (average 731 ppm) and relatively depleted in HREE (average 186 ppm) and show an M-type first tetrad that leads to a convex upward pattern between Ce and Gd. Mildly positive to no Eu anomalies are observed (Eu/Eu* = 1.06–1.17). The REE patterns (LaN/YbN = 1.11–2.11) are similar to those of garnets from skarn deposits. The presence of tetrad effect in the LREE pattern suggests an active role of metasomatic processes involving hydrothermal fluids during the growth of the garnets. These garnets also contain high Nb (282–2283 ppm) and V (1083–2155 ppm) concentrations, which stand out against the composition of the host rock. Therefore, late-stage metasomatic reactions of earlier formed minerals with hydrothermal fluid enriched in Fe, Si, LREE, Nb, V, and Ti led to the formation of garnet. The primary source for these elements could be magnetite, ilmenite, and pyrochlore present in different varieties of carbonatites in the ASACC, with the required elements being released during their interaction with the hydrothermal fluid. The hydrothermal fluid was likely to be moderately acidic, and having fluoride and sulfate as the primary ligands.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 570
Author(s):  
Maria Bogina ◽  
Boris Belyatsky ◽  
Evgenii Sharkov ◽  
Alexey Chistyakov ◽  
Robert Krymsky

This article reports new geochemical, Sr-Nd-Hf-Pb and Re-Os data on the rocks of the Middle Paleoproterozoic (1.99 Ga) Tiksheozero ultramafic-alkaline-carbonatite complex confined to the northeastern margin of the Karelian Craton. We focus on the poorly studied silicate rocks. Based on petrographic and geochemical research, the silicate rocks are subdivided into two groups: an ultramafic-mafic series depleted in REE, and other incompatible elements and an alkaline series enriched in these elements. Isotope studies showed that all rocks have juvenile isotope signatures and were likely derived from a primitive OIB-type mantle source with possible contributions of the subcontinental lithospheric mantle (SCLM). Insignificant crustal contamination is recorded by Pb and Os isotopic compositions. The incompatible element enrichment in the alkaline rocks and depletion in ultramafic-mafic rocks of the mildly alkaline series with allowance for insignificant crustal contamination confirm their derivation from different primary melts. However, a narrow range of Sr, Nd, Hf, and Pb isotope compositions and compact clusters in 207Pb/204Pb-206Pb/204Pb, Nd-87Sr/86Sr and Hf-Nd isotope diagrams indicate their origination from a common mantle source. A model of subsequent two-stage melting is being most consistent with the geochemical data for this complex.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 556
Author(s):  
Mikhail Nikolaevich Kruk ◽  
Anna Gennadievna Doroshkevich ◽  
Ilya Romanovich Prokopyev ◽  
Ivan Aleksandrovich Izbrodin

The Arbarastakh ultramafic carbonatite complex is located in the southwestern part of the Siberian Craton and contains ore-bearing carbonatites and phoscorites with Zr-Nb-REE mineralization. Based on the modal composition, textural features, and chemical compositions of minerals, the phoscorites from Arbarastakh can be subdivided into two groups: FOS 1 and FOS 2. FOS 1 contains the primary minerals olivine, magnetite with isomorphic Ti impurities, phlogopite replaced by tetraferriphlogopite along the rims, and apatite poorly enriched in REE. Baddeleyite predominates among the accessory minerals in FOS 1. Zirconolite enriched with REE and Nb and pyrochlore are found in smaller quantities. FOS 2 has a similar mineral composition but contains much less olivine, magnetite is enriched in Mg, and the phlogopite is enriched in Ba and Al. Of the accessory minerals, pyrochlore predominates and is enriched in Ta, Th, and U; baddeleyite is subordinate and enriched in Nb. Chemical and textural differences suggest that the phoscorites were formed by the sequential introduction of different portions of the melt. The melt that formed the FOS 1 was enriched in Zr and REE relative to the FOS 2 melt; the melt that formed the FOS 2 was enriched in Al, Ba, Nb, Ta, Th, U, and, to a lesser extent, Sr.


Sign in / Sign up

Export Citation Format

Share Document