MECHANISM ANALYSIS OF VOLCANIC ACTIVITY ON ORGANIC MATTER ENRICHMENT IN SHALE: TAKING JSBY1 WELL IN UPPER YANGTZE AREA OF SOUTH CHINA AS AN EXAMPLE

2020 ◽  
Author(s):  
Yao Zeng ◽  
◽  
Jun Peng ◽  
Kun Zhang ◽  
Yiming Yang ◽  
...  
Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Xiaoxue Liu ◽  
Zhenxue Jiang ◽  
Kun Zhang ◽  
Yan Song ◽  
Lin Jiang ◽  
...  

Organic matter is the material basis of shale hydrocarbon generation. The current organic matter content in shale is controlled by the original sedimentary organic matter abundance. Therefore, the study of the enrichment mechanism of sedimentary organic matter in shale has become an important issue to be solved. The Upper Yangtze area is the important exploration and exploitation area of marine shale gas in China. The shale of the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in the Yangtze area is the research object. Choosing redox indicator and biological productivity indicator, the study explores the enrichment mechanism of sedimentary organic matter from two aspects, sealing of water and volcanic activity. The results show that excess siliceous mineral in the shale of the Wufeng Formation-Longmaxi Formation in the Upper Yangtze area is bioorigin. Excess siliceous mineral can be used as one of the indicators of biological productivity. On the one hand, layer phenomenon occurred since the strong water sealing during the sedimentary period of Wufeng and the lower section of the Longmaxi Formation, which results in the high content of oxygen in surface water. On the other hand, the active volcanic activity brought volcanic ash which was beneficial to biological reproduction. Both of these factors led to higher biological productivity during this period. At the same time, the strong sealing of water made the lower layer of the water more reductive, and the active volcanic activity caused climate change, enhancing the reduction of the lower layer of the water, which made the rich organic matter deposited from the surface water well preserved. In the sedimentary period of the upper section of the Longmaxi Formation 1st member in the Upper Yangtze area, on the one hand, due to the weakened sealing of water, the oxygen content of the upper water decreased. On the other hand, the volcanic activity weakened until it stopped, and the source of volcanic ash rich in nutrient elements decreased. These two aspects led to lower biological productivity during this period. At the same time, the weaker water sealing could lead to a decrease in the reduction of the lower layer of the water, and the gradual cessation of volcanic activity no longer affected the climate, causing the destruction of sedimentary organic matter by oxidation.


Minerals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 428 ◽  
Author(s):  
Ziyi Liu ◽  
Dongxia Chen ◽  
Jinchuan Zhang ◽  
Xiuxiang Lü ◽  
Ziyi Wang ◽  
...  

Pyrite is the most common authigenic mineral preserved in many ancient sedimentary rocks. Pyrite also widely exists in the Longmaxi and Wufeng marine shales in the middle Yangtze area in South China. The Longmaxi and Wufeng shales were mainly discovered with 3 types of pyrites: pyrite framboids, euhedral pyrites and infilled framboids. Euhedral pyrites (Py4) and infilled framboids (Py5) belong to the diagenetic pyrites. Based on the formation mechanism of pyrites, the pyrites could be divided into syngenetic pyrites, early diagenetic pyrites, and late diagenetic pyrites. Under a scanning electron microscope (SEM), the syngenetic pyrites are mostly small framboids composed of small microcrystals, but the diagenetic pyrites are variable in shapes and the diagenetic framboids are variable in sizes with large microcrystals. Due to the deep burial stage, the pore space in the sediment was sharply reduced and the diameter of the late diagenetic framboids that formed in the pore space is similar to the diameter of the syngenetic framboids. However, the diameter of the syngenetic framboid microcrystals is suggested to range mainly from 0.3 µm to 0.4 µm, and that of the diagenetic framboid microcrystals is larger than 0.4 µm in the study area. According to the diameter of the pyrite framboids (D) and the diameter of the framboid microcrystals (d), the pyrite framboids could be divided into 3 sizes: syngenetic framboids (Py1, D < 5 µm, d ≤ 0.4 µm), early diagenetic framboids (Py2, D > 5 µm, d > 0.4 µm) and late diagenetic framboids (Py3, D < 5 µm, d > 0.4 µm). Additionally, the mean size and standard deviation/skewness values of the populations of pyrite framboids were used to distinguish the paleoredox conditions during the sedimentary stage. In the study area, most of the pyrite framboids are smaller than 5 µm, indicating the sedimentary water body was a euxinic environment. However, pyrite framboids larger than 5 µm in the shales indicated that the sedimentary water body transformed to an oxic-dysoxic environment with relatively low total organic carbon (TOC: 0.4–0.99%). Furthermore, the size of the framboid microcrystals could be used to estimate the gas content due to thermochemical sulfate reduction (TSR). The process of TSR occurs with oxidation of organic matter (OM) and depletes the H bond of the OM, which will influence the amount of alkane gas produced from the organic matter during the thermal evolution. Thus, syngenetic pyrites (d ranges from 0.35 µm to 0.37 µm) occupy the main proportion of pyrites in the Wufeng shales with high gas content (1.30–2.30 m3/t), but the Longmaxi shales (d ranges from 0.35 µm to 0.72 µm) with a relatively low gas content (0.07–0.93 m3/t) contain diagenetic pyrites. Because of TSR, the increasing size of the microcrystals may result in an increase in the value of δ13C1 and a decrease in the value of δ13C1-δ13C2. Consequently, the size of pyrite framboids and microcrystals could be widely used for rapid evaluation of the paleoredox conditions and the gas content in shales.


2013 ◽  
Vol 32 (4) ◽  
pp. 18-26 ◽  
Author(s):  
Hongyan Bao ◽  
Ying Wu ◽  
Lixin Tian ◽  
Jing Zhang ◽  
Guiling Zhang

Sign in / Sign up

Export Citation Format

Share Document