COMPARING LIFE HISTORY PATTERNS IN SHELLS OF CO-OCCURRING MERCENARIA MERCENARIA AND M. CAMPECHIENSIS FROM FLORIDA AND NORTH CAROLINA, USA

2020 ◽  
Author(s):  
Sage Turek ◽  
◽  
Kylie Palmer ◽  
Donna Surge
1987 ◽  
Vol 65 (4) ◽  
pp. 997-1000 ◽  
Author(s):  
Eric P. Hoberg

The Tetrabothriidae represent the dominant group of cestodes, previously known only as adult parasites, in marine birds and mammals. Recognition of their unique plerocercoid larvae provides the first definitive evidence for life history patterns and phylogenetic relationships with other cestodes. Affinities of the Tetrabothriidae and Tetraphyllidea, cestodes of elasmobranchs, are indicated by larval morphology and ontogeny. However, patterns of sequential heterochrony in the ontogeny of the adult scolex of Tetrabothrius sp. appear to be unique among the Eucestoda. Tetrabothriids constitute a fauna that originated by host switching from elasmobranchs to homeotherms, via ecological associations, following invasion of marine communities by birds and mammals in the Tertiary.


Paleobiology ◽  
2018 ◽  
Vol 44 (4) ◽  
pp. 783-797 ◽  
Author(s):  
Kelly E. Cronin ◽  
Gregory P. Dietl ◽  
Patricia H. Kelley ◽  
Stewart M. Edie

AbstractLife span bias potentially alters species abundance in death assemblages through the overrepresentation of short-lived organisms compared with their long-lived counterparts. Although previous work found that life span bias did not contribute significantly to live–dead discordance in bivalve assemblages, life span bias better explained discordance in two groups: longer-lived bivalve species and species with known life spans. More studies using local, rather than global, species-wide life spans and mortality rates would help to determine the prevalence of life span bias, especially for long-lived species with known life spans. Here, we conducted a field study at two sites in North Carolina to assess potential life span bias between Mercenaria mercenaria and Chione elevata, two long-lived bivalve species that can be aged directly. We compared the ability of directly measured local life spans with that of regional and global life spans to predict live–dead discordance between these two species. The shorter-lived species (C. elevata) was overrepresented in the death assemblage compared with its live abundance, and local life span data largely predicted the amount of live–dead discordance; local life spans predicted 43% to 88% of discordance. Furthermore, the global maximum life span for M. mercenaria resulted in substantial overpredictions of discordance (1.4 to 1.6 times the observed live–dead discordance). The results of this study suggest that life span bias should be considered as a factor affecting proportional abundances of species in death assemblages and that using life span estimates appropriate to the study locality improves predictions of discordance based on life span compared with using global life span estimates.


Oecologia ◽  
1979 ◽  
Vol 40 (2) ◽  
pp. 189-201 ◽  
Author(s):  
G. D. Constantz

Author(s):  
Patrick Uthe ◽  
Robert Al-Chokhachy

The Upper Snake River represents one of the largest remaining strongholds of Yellowstone cutthroat across its native range. Understanding the effects of restoration activities and the diversity of life-history patterns and factors influencing such patterns remains paramount for long-term conservation strategies. In 2011, we initiated a project to quantify the success of the removal of a historic barrier on Spread Creek and to evaluate the relative influence of different climate attributes on native Yellowstone cutthroat trout and non-native brook trout behavior and fitness. Our results to date have demonstrated the partial success of the dam removal with large, fluvial Yellowstone cutthroat trout migrating up Spread Creek to spawn, thus reconnecting this population to the greater Snake River metapopulation. Early indications from mark-recapture data demonstrate considerable differences in life-history and demographic patterns across tributaries within the Spread Creek drainage. Our results highlight the diversity of life-history patterns of resident and fluvial Yellowstone cutthroat trout with considerable differences in seasonal and annual growth rates and behavior across populations. Continuing to understand the factors influencing such patterns will provide a template for prioritizing restoration activities in the context of future challenges to conservation (e.g., climate change).


Author(s):  
Charles E. King ◽  
Claudia Ricci ◽  
Justin Schonfeld ◽  
Manuel Serra

Sign in / Sign up

Export Citation Format

Share Document