FIRST-ARRIVAL TRAVEL-TIME CALCULATION FOR ATTENUATING TILTED TRANSVERSELY ISOTROPIC MEDIA USING A FAST SWEEPING METHOD

2020 ◽  
Author(s):  
Mengxiu Wang ◽  
◽  
Jingyi Chen
Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. S385-S393
Author(s):  
Umair bin Waheed

Fast and accurate traveltime computation for quasi-P waves in anisotropic media is an essential ingredient of many seismic processing and interpretation applications such as Kirchhoff modeling and migration, microseismic source localization, and traveltime tomography. Fast-sweeping methods are widely used for solving the anisotropic eikonal equation due to their flexibility in solving general equations compared to the fast-marching method. However, it has been observed that fast sweeping can be much less efficient than fast marching for models with curved characteristics and practical grid sizes. By representing a tilted transversely isotropic (TTI) equation as a sequence of elliptically isotropic (EI) eikonal equations, we determine that the fast-marching algorithm can be used to compute fast and accurate traveltimes for TTI media. The tilt angle is absorbed into the description of the effective EI model; therefore, the adopted approach does not compromise on the solution accuracy. Through tests on benchmark synthetic models, we test our fast-marching algorithm and discover considerable improvement in accuracy by using factorization and a second-order finite-difference stencil. The adopted methodology opens the door to the possibility of using the fast-marching algorithm for a wider class of anisotropic eikonal equations.


Geophysics ◽  
1994 ◽  
Vol 59 (2) ◽  
pp. 272-281 ◽  
Author(s):  
Eduardo L. Faria ◽  
Paul L. Stoffa

An approach for calculating first‐arrival traveltimes in a transversely isotropic medium is developed and has the advantage of avoiding shadow zones while still being computationally fast. Also, it works with an arbitrary velocity grid that may have discontinuities. The method is based on Fermat’s principle. The traveltime for each point in the grid is calculated several times using previously calculated traveltimes at surrounding grid points until the minimum time is found. Different ranges of propagation angle are covered in each traveltime calculation such that at the end of the process all propagation angles are covered. This guarantees that the first‐arrival traveltime for a specific grid point is correctly calculated. The resulting algorithm is fully vectorizable. The method is robust and can accurately determine first‐arrival traveltimes in heterogeneous media. Traveltimes are compared to finite‐difference modeling of transversely isotropic media and are found to be in excellent agreement. An application to prestack migration is used to illustrate the usefulness of the method.


2019 ◽  
Vol 50 (2) ◽  
pp. 144-158
Author(s):  
Guangnan Huang ◽  
Songting Luo ◽  
Tryggvason Ari ◽  
Hongxing Li ◽  
David C. Nobes

2006 ◽  
Vol 49 (6) ◽  
pp. 1603-1612 ◽  
Author(s):  
Ai-Hua ZHAO ◽  
Mei-Gen ZHANG ◽  
Zhi-Feng DING

Geophysics ◽  
2021 ◽  
pp. 1-64
Author(s):  
Qingyu Zhang ◽  
Xiao Ma ◽  
Yufeng Nie

Computation of traveltimes and ray paths is important for anisotropic tomography inversions. The Eikonal-equation-based method outperforms traditional ray methods by producing more accurate results. However, most existing Eikonal solvers are formulated on structured regular meshes, which are no longer accurate for models with the presence of irregular topography and subsurface interfaces. To solve Eikonal equation in vertically transversely isotropic (VTI) or tilted transversely isotropic (TTI) models with irregular geometry, we formulate a new iterative fast sweeping method on unstructured triangular meshes. The fixed-point iteration is implemented to capture the high-order nonlinear terms therein and a fast sweeping method on unstructured triangular meshes is implemented to solve the resulting elliptically anisotropic Eikonal equation at every iteration. We test the new algorithm for direct arrivals and reflected arrivals, and then use the calculated traveltimes to track the ray path in VTI/TTI media. Numerical tests demonstrate the validity and accuracy of the new method for models with rough topography and subsurface interface.


Sign in / Sign up

Export Citation Format

Share Document