Hybrid Fast Sweeping Methods for Anisotropic Eikonal Equation in Two-Dimensional Tilted Transversely Isotropic Media

2020 ◽  
Vol 84 (2) ◽  
Author(s):  
Guangnan Huang ◽  
Songting Luo
Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. T191-T207
Author(s):  
Xingguo Huang ◽  
Hui Sun ◽  
Zhangqing Sun ◽  
Nuno Vieira da Silva

The complex traveltime solutions of the complex eikonal equation are the basis of inhomogeneous plane-wave seismic imaging methods, such as Gaussian beam migration and tomography. We have developed analytic approximations for the complex traveltime in transversely isotropic media with a titled symmetry axis, which is defined by a Taylor series expansion over the anisotropy parameters. The formulation for the complex traveltime is developed using perturbation theory and the complex point-source method. The real part of the complex traveltime describes the wavefront, and the imaginary part of the complex traveltime describes the decay of the amplitude of waves away from the central ray. We derive the linearized ordinary differential equations for the coefficients of the Taylor-series expansion using perturbation theory. The analytical solutions for the complex traveltimes are determined by applying the complex point-source method to the background traveltime formula and subsequently obtaining the coefficients from the linearized ordinary differential equations. We investigate the influence of the anisotropy parameters and of the initial width of the ray tube on the accuracy of the computed traveltimes. The analytical formulas, as outlined, are efficient methods for the computation of complex traveltimes from the complex eikonal equation. In addition, those formulas are also effective methods for benchmarking approximated solutions.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. S385-S393
Author(s):  
Umair bin Waheed

Fast and accurate traveltime computation for quasi-P waves in anisotropic media is an essential ingredient of many seismic processing and interpretation applications such as Kirchhoff modeling and migration, microseismic source localization, and traveltime tomography. Fast-sweeping methods are widely used for solving the anisotropic eikonal equation due to their flexibility in solving general equations compared to the fast-marching method. However, it has been observed that fast sweeping can be much less efficient than fast marching for models with curved characteristics and practical grid sizes. By representing a tilted transversely isotropic (TTI) equation as a sequence of elliptically isotropic (EI) eikonal equations, we determine that the fast-marching algorithm can be used to compute fast and accurate traveltimes for TTI media. The tilt angle is absorbed into the description of the effective EI model; therefore, the adopted approach does not compromise on the solution accuracy. Through tests on benchmark synthetic models, we test our fast-marching algorithm and discover considerable improvement in accuracy by using factorization and a second-order finite-difference stencil. The adopted methodology opens the door to the possibility of using the fast-marching algorithm for a wider class of anisotropic eikonal equations.


Geophysics ◽  
2017 ◽  
Vol 82 (1) ◽  
pp. C9-C20 ◽  
Author(s):  
Qi Hao ◽  
Tariq Alkhalifah

Seismic-wave attenuation is an important component of describing wave propagation. Certain regions, such as gas clouds inside the earth, exert highly localized attenuation. In fact, the anisotropic nature of the earth induces anisotropic attenuation because the quasi P-wave dispersion effect should be profound along the symmetry direction. We have developed a 2D acoustic eikonal equation governing the complex-valued traveltime of quasi P-waves in attenuating, transversely isotropic media with a vertical-symmetry axis (VTI). This equation is derived under the assumption that the complex-valued traveltime of quasi P-waves in attenuating VTI media are independent of the S-wave velocity parameter [Formula: see text] in Thomsen’s notation and the S-wave attenuation coefficient [Formula: see text] in Zhu and Tsvankin’s notation. We combine perturbation theory and Shanks transform to develop practical approximations to the acoustic attenuating eikonal equation, capable of admitting an analytical description of the attenuation in homogeneous media. For a horizontal-attenuating VTI layer, we also derive the nonhyperbolic approximations for the real and imaginary parts of the complex-valued reflection traveltime. These equations reveal that (1) the quasi SV-wave velocity and the corresponding quasi SV-wave attenuation coefficient given as part of Thomsen-type notation barely affect the ray velocity and ray attenuation of quasi P-waves in attenuating VTI media; (2) combining the perturbation method and Shanks transform provides an accurate analytic eikonal solution for homogeneous attenuating VTI media; (3) for a horizontal attenuating VTI layer with weak attenuation, the real part of the complex-valued reflection traveltime may still be described by the existing nonhyperbolic approximations developed for nonattenuating VTI media, and the imaginary part of the complex-valued reflection traveltime still has the shape of nonhyperbolic curves. In addition, we have evaluated the possible extension of the proposed eikonal equation to realistic attenuating media, an alternative perturbation solution to the proposed eikonal equation, and the feasibility of applying the proposed nonhyperbolic equation for the imaginary part of the complex-valued traveltime to invert for interval attenuation parameters.


Geophysics ◽  
2021 ◽  
pp. 1-33
Author(s):  
Xingguo Huang ◽  
Stewart Greenhalgh ◽  
Yun Long ◽  
Lin Jun ◽  
Xu Liu

Many applications in seismology involve the modeling of seismic wave traveltimes in anisotropic media. We present homotopy solutions of the acoustic eikonal equation for P-waves traveltimes in attenuating transversely isotropic media with a vertical symmetry axis. Instead of the commonly used perturbation theory, we use the homotopy analysis method to express the traveltimes by a Taylor series expansion over an embedding parameter. For the derivation, we first perform homotopy analysis of the eikonal equation and derive the linearized ordinary differential equations for the coefficients of the Taylor series expansion. Then, we obtain the homotopy solutions for the traveltimes by solving the linearized ordinary differential equations. Results on approximate formulae investigations demonstrate that the analytical expressions are efficient methods for the computation of traveltimes from the eikonal equation. In addition, these formulas are also effective methods for benchmarking approximated solutions in strongly attenuating anisotropic media.


Sign in / Sign up

Export Citation Format

Share Document