eikonal equations
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 11)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Vol 10 (1) ◽  
pp. 436-449
Author(s):  
Mehrollah Meher ◽  
Davood Rostamy

Abstract Many important natural phenomena of wave propagations are modeled by Eikonal equations and a variety of new methods are needed to solve them. The differential quadrature method (DQM) is an effective numerical method for solving the system of differential equations that can achieve accurate numerical results using fewer grid points and therefore requires relatively little computational effort. In this paper, we focus on the implementation of the non-smooth Eikonal optimization by using a hybrid of polynomial differential quadrature (PDQ) or Fourier differential quadrature (FDQ) method and sub-gradients idea. Our goal is to develop a new Eikonal equation system design for wave propagation equations, as well as the efficiency and accuracy of new grid points to reduce errors and compare errors in various physical equation problems, especially wave propagation equations, and achieve their convergence. We explore the accuracy and stability of the Eikonal equation system by two-dimensional and three-dimensional numerical examples and the use of three types of grid points in a comprehensive manner. This article aims to create a new and innovative solution to the non-smooth Eikonal equation system. This new method is much more efficient and effective than traditional numerical solution methods same as DQ.


2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Miguel Socolovsky ◽  

We study the eikonal function φ corresponding to outgoing and ingoing radial null geodesics (light rays in the short wave length limit) in the Schwarzschild spacetime. Contrary to the behavior of the expansion scalar θ at the singularities (past and future), φ turns out to be finite at r = 0 (except for light travelling along the horizons) and inversely proportional to M, the mass of the black hole, and so proportional to the Hawking temperature.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. S385-S393
Author(s):  
Umair bin Waheed

Fast and accurate traveltime computation for quasi-P waves in anisotropic media is an essential ingredient of many seismic processing and interpretation applications such as Kirchhoff modeling and migration, microseismic source localization, and traveltime tomography. Fast-sweeping methods are widely used for solving the anisotropic eikonal equation due to their flexibility in solving general equations compared to the fast-marching method. However, it has been observed that fast sweeping can be much less efficient than fast marching for models with curved characteristics and practical grid sizes. By representing a tilted transversely isotropic (TTI) equation as a sequence of elliptically isotropic (EI) eikonal equations, we determine that the fast-marching algorithm can be used to compute fast and accurate traveltimes for TTI media. The tilt angle is absorbed into the description of the effective EI model; therefore, the adopted approach does not compromise on the solution accuracy. Through tests on benchmark synthetic models, we test our fast-marching algorithm and discover considerable improvement in accuracy by using factorization and a second-order finite-difference stencil. The adopted methodology opens the door to the possibility of using the fast-marching algorithm for a wider class of anisotropic eikonal equations.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 39005-39029 ◽  
Author(s):  
J. V. Gomez ◽  
D. Alvarez ◽  
S. Garrido ◽  
L. Moreno

Sign in / Sign up

Export Citation Format

Share Document