AN ASSEMBLY OF PRESCRIBED BOUNDARY CONDITIONS FOR THE CLIMATE-MODEL SIMULATIONS ACROSS THE PERMO-TRIASSIC BOUNDARY(PTB)

2020 ◽  
Author(s):  
Mitali D. Gautam ◽  
◽  
Arne Winguth ◽  
Cornelia Winguth ◽  
Christopher Scotese ◽  
...  
2017 ◽  
Vol 30 (24) ◽  
pp. 9785-9806 ◽  
Author(s):  
Eytan Rocheta ◽  
Jason P. Evans ◽  
Ashish Sharma

Global climate model simulations inherently contain multiple biases that, when used as boundary conditions for regional climate models, have the potential to produce poor downscaled simulations. Removing these biases before downscaling can potentially improve regional climate change impact assessment. In particular, reducing the low-frequency variability biases in atmospheric variables as well as modeled rainfall is important for hydrological impact assessment, predominantly for the improved simulation of floods and droughts. The impact of this bias in the lateral boundary conditions driving the dynamical downscaling has not been explored before. Here the use of three approaches for correcting the lateral boundary biases including mean, variance, and modification of sample moments through the use of a nested bias correction (NBC) method that corrects for low-frequency variability bias is investigated. These corrections are implemented at the 6-hourly time scale on the global climate model simulations to drive a regional climate model over the Australian Coordinated Regional Climate Downscaling Experiment (CORDEX) domain. The results show that the most substantial improvement in low-frequency variability after bias correction is obtained from modifying the mean field, with smaller changes attributed to the variance. Explicitly modifying monthly and annual lag-1 autocorrelations through NBC does not substantially improve low-frequency variability attributes of simulated precipitation in the regional model over a simpler mean bias correction. These results raise questions about the nature of bias correction techniques that are required to successfully gain improvement in regional climate model simulations and show that more complicated techniques do not necessarily lead to more skillful simulation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shiv Priyam Raghuraman ◽  
David Paynter ◽  
V. Ramaswamy

AbstractThe observed trend in Earth’s energy imbalance (TEEI), a measure of the acceleration of heat uptake by the planet, is a fundamental indicator of perturbations to climate. Satellite observations (2001–2020) reveal a significant positive globally-averaged TEEI of 0.38 ± 0.24 Wm−2decade−1, but the contributing drivers have yet to be understood. Using climate model simulations, we show that it is exceptionally unlikely (<1% probability) that this trend can be explained by internal variability. Instead, TEEI is achieved only upon accounting for the increase in anthropogenic radiative forcing and the associated climate response. TEEI is driven by a large decrease in reflected solar radiation and a small increase in emitted infrared radiation. This is because recent changes in forcing and feedbacks are additive in the solar spectrum, while being nearly offset by each other in the infrared. We conclude that the satellite record provides clear evidence of a human-influenced climate system.


Sign in / Sign up

Export Citation Format

Share Document