scholarly journals Anthropogenic forcing and response yield observed positive trend in Earth’s energy imbalance

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shiv Priyam Raghuraman ◽  
David Paynter ◽  
V. Ramaswamy

AbstractThe observed trend in Earth’s energy imbalance (TEEI), a measure of the acceleration of heat uptake by the planet, is a fundamental indicator of perturbations to climate. Satellite observations (2001–2020) reveal a significant positive globally-averaged TEEI of 0.38 ± 0.24 Wm−2decade−1, but the contributing drivers have yet to be understood. Using climate model simulations, we show that it is exceptionally unlikely (<1% probability) that this trend can be explained by internal variability. Instead, TEEI is achieved only upon accounting for the increase in anthropogenic radiative forcing and the associated climate response. TEEI is driven by a large decrease in reflected solar radiation and a small increase in emitted infrared radiation. This is because recent changes in forcing and feedbacks are additive in the solar spectrum, while being nearly offset by each other in the infrared. We conclude that the satellite record provides clear evidence of a human-influenced climate system.

Author(s):  
Raquel Barata ◽  
Raquel Prado ◽  
Bruno Sansó

Abstract. We present a data-driven approach to assess and compare the behavior of large-scale spatial averages of surface temperature in climate model simulations and in observational products. We rely on univariate and multivariate dynamic linear model (DLM) techniques to estimate both long-term and seasonal changes in temperature. The residuals from the DLM analyses capture the internal variability of the climate system and exhibit complex temporal autocorrelation structure. To characterize this internal variability, we explore the structure of these residuals using univariate and multivariate autoregressive (AR) models. As a proof of concept that can easily be extended to other climate models, we apply our approach to one particular climate model (MIROC5). Our results illustrate model versus data differences in both long-term and seasonal changes in temperature. Despite differences in the underlying factors contributing to variability, the different types of simulation yield very similar spectral estimates of internal temperature variability. In general, we find that there is no evidence that the MIROC5 model systematically underestimates the amplitude of observed surface temperature variability on multi-decadal timescales – a finding that has considerable relevance regarding efforts to identify anthropogenic “fingerprints” in observational surface temperature data. Our methodology and results present a novel approach to obtaining data-driven estimates of climate variability for purposes of model evaluation.


2018 ◽  
Vol 31 (14) ◽  
pp. 5681-5693 ◽  
Author(s):  
Leela M. Frankcombe ◽  
Matthew H. England ◽  
Jules B. Kajtar ◽  
Michael E. Mann ◽  
Byron A. Steinman

Abstract In this paper we examine various options for the calculation of the forced signal in climate model simulations, and the impact these choices have on the estimates of internal variability. We find that an ensemble mean of runs from a single climate model [a single model ensemble mean (SMEM)] provides a good estimate of the true forced signal even for models with very few ensemble members. In cases where only a single member is available for a given model, however, the SMEM from other models is in general out-performed by the scaled ensemble mean from all available climate model simulations [the multimodel ensemble mean (MMEM)]. The scaled MMEM may therefore be used as an estimate of the forced signal for observations. The MMEM method, however, leads to increasing errors further into the future, as the different rates of warming in the models causes their trajectories to diverge. We therefore apply the SMEM method to those models with a sufficient number of ensemble members to estimate the change in the amplitude of internal variability under a future forcing scenario. In line with previous results, we find that on average the surface air temperature variability decreases at higher latitudes, particularly over the ocean along the sea ice margins, while variability in precipitation increases on average, particularly at high latitudes. Variability in sea level pressure decreases on average in the Southern Hemisphere, while in the Northern Hemisphere there are regional differences.


2019 ◽  
Vol 32 (13) ◽  
pp. 4089-4102 ◽  
Author(s):  
Ryan J. Kramer ◽  
Brian J. Soden ◽  
Angeline G. Pendergrass

Abstract We analyze the radiative forcing and radiative response at Earth’s surface, where perturbations in the radiation budget regulate the atmospheric hydrological cycle. By applying a radiative kernel-regression technique to CMIP5 climate model simulations where CO2 is instantaneously quadrupled, we evaluate the intermodel spread in surface instantaneous radiative forcing, radiative adjustments to this forcing, and radiative responses to surface warming. The cloud radiative adjustment to CO2 forcing and the temperature-mediated cloud radiative response exhibit significant intermodel spread. In contrast to its counterpart at the top of the atmosphere, the temperature-mediated cloud radiative response at the surface is found to be positive in some models and negative in others. Also, the compensation between the temperature-mediated lapse rate and water vapor radiative responses found in top-of-atmosphere calculations is not present for surface radiative flux changes. Instantaneous radiative forcing at the surface is rarely reported for model simulations; as a result, intermodel differences have not previously been evaluated in global climate models. We demonstrate that the instantaneous radiative forcing is the largest contributor to intermodel spread in effective radiative forcing at the surface. We also find evidence of differences in radiative parameterizations in current models and argue that this is a significant, but largely overlooked, source of bias in climate change simulations.


2012 ◽  
Vol 8 (3) ◽  
pp. 919-933 ◽  
Author(s):  
I. Dorado Liñán ◽  
U. Büntgen ◽  
F. González-Rouco ◽  
E. Zorita ◽  
J. P. Montávez ◽  
...  

Abstract. Past temperature variations are usually inferred from proxy data or estimated using general circulation models. Comparisons between climate estimations derived from proxy records and from model simulations help to better understand mechanisms driving climate variations, and also offer the possibility to identify deficiencies in both approaches. This paper presents regional temperature reconstructions based on tree-ring maximum density series in the Pyrenees, and compares them with the output of global simulations for this region and with regional climate model simulations conducted for the target region. An ensemble of 24 reconstructions of May-to-September regional mean temperature was derived from 22 maximum density tree-ring site chronologies distributed over the larger Pyrenees area. Four different tree-ring series standardization procedures were applied, combining two detrending methods: 300-yr spline and the regional curve standardization (RCS). Additionally, different methodological variants for the regional chronology were generated by using three different aggregation methods. Calibration verification trials were performed in split periods and using two methods: regression and a simple variance matching. The resulting set of temperature reconstructions was compared with climate simulations performed with global (ECHO-G) and regional (MM5) climate models. The 24 variants of May-to-September temperature reconstructions reveal a generally coherent pattern of inter-annual to multi-centennial temperature variations in the Pyrenees region for the last 750 yr. However, some reconstructions display a marked positive trend for the entire length of the reconstruction, pointing out that the application of the RCS method to a suboptimal set of samples may lead to unreliable results. Climate model simulations agree with the tree-ring based reconstructions at multi-decadal time scales, suggesting solar variability and volcanism as the main factors controlling preindustrial mean temperature variations in the Pyrenees. Nevertheless, the comparison also highlights differences with the reconstructions, mainly in the amplitude of past temperature variations and in the 20th century trends. Neither proxy-based reconstructions nor model simulations are able to perfectly track the temperature variations of the instrumental record, suggesting that both approximations still need further improvements.


2021 ◽  
Vol 12 (2) ◽  
pp. 401-418
Author(s):  
Nicola Maher ◽  
Sebastian Milinski ◽  
Ralf Ludwig

Abstract. Single model initial-condition large ensembles (SMILEs) are valuable tools that can be used to investigate the climate system. SMILEs allow scientists to quantify and separate the internal variability of the climate system and its response to external forcing, with different types of SMILEs appropriate to answer different scientific questions. In this editorial we first provide an introduction to SMILEs and an overview of the studies in the special issue “Large Ensemble Climate Model Simulations: Exploring Natural Variability, Change Signals and Impacts”. These studies analyse a range of different types of SMILEs including global climate models (GCMs), regionally downscaled climate models (RCMs), a hydrological model with input from a RCM SMILE, a SMILE with prescribed sea surface temperature (SST) built for event attribution, a SMILE that assimilates observed data, and an initialised regional model. These studies provide novel methods, that can be used with SMILEs. The methods published in this issue include a snapshot empirical orthogonal function analysis used to investigate El Niño–Southern Oscillation teleconnections; the partitioning of future uncertainty into model differences, internal variability, and scenario choices; a weighting scheme for multi-model ensembles that can incorporate SMILEs; and a method to identify the required ensemble size for any given problem. Studies in this special issue also focus on RCM SMILEs, with projections of the North Atlantic Oscillation and its regional impacts assessed over Europe, and an RCM SMILE intercomparison. Finally a subset of studies investigate projected impacts of global warming, with increased water flows projected for future hydrometeorological events in southern Ontario; precipitation projections over central Europe are investigated and found to be inconsistent across models in the Alps, with a continuation of past tendencies in Mid-Europe; and equatorial Asia is found to have an increase in the probability of large fire and drought events under higher levels of warming. These studies demonstrate the utility of different types of SMILEs. In the second part of this editorial we provide a perspective on how three types of SMILEs could be combined to exploit the advantages of each. To do so we use a GCM SMILE and an RCM SMILE with all forcings, as well as a naturally forced GCM SMILE (nat-GCM) over the European domain. We utilise one of the key advantages of SMILEs, precisely separating the forced response and internal variability within an individual model to investigate a variety of simple questions. Broadly we show that the GCM can be used to investigate broad-scale patterns and can be directly compared to the nat-GCM to attribute forced changes to either anthropogenic emissions or volcanoes. The RCM provides high-resolution spatial information of both the forced change and the internal variability around this change at different warming levels. By combining all three ensembles we can gain information that would not be available using a single type of SMILE alone, providing a perspective on future research that could be undertaken using these tools.


2020 ◽  
Author(s):  
Benjamin Poschlod ◽  
Ralf Ludwig ◽  
Jana Sillmann

Abstract. Information on the frequency and intensity of extreme precipitation is required by public authorities, civil security departments and engineers for the design of buildings and the dimensioning of water management and drainage schemes. Especially for sub-daily resolution, at which many extreme precipitation events occur, the observational data are sparse in space and time, distributed heterogeneously over Europe and often not publicly available. We therefore consider it necessary to provide an impact-orientated data set of 10-year rainfall return levels over Europe based on climate model simulations and evaluate its quality. Hence, to standardize procedures and provide comparable results, we apply a high-resolution single-model large ensemble (SMILE) of the Canadian Regional Climate Model version 5 (CRCM5) with 50 members in order to assess the frequency of heavy precipitation events over Europe between 1980 and 2009. The application of a SMILE enables a robust estimation of extreme rainfall return levels with the 50 members of 30-year climate simulations providing 1500 years of rainfall data. As the 50 members only differ due to the internal variability of the climate system, the impact of internal variability on the return level values can be quantified. We present 10-year rainfall return levels of hourly to 24-hourly duration with a spatial resolution of 0.11° (12.5 km), which are compared to a large data set of observation-based rainfall return levels of 16 European countries. This observation-based data set was newly compiled and homogenized for this study from 32 different sources. The rainfall return levels of the CRCM5 are able to reproduce the general spatial pattern of extreme precipitation for all sub-daily durations with centred Pearson product-moment coefficients of linear correlation > 0.7 for the area covered with observations. Also, the rainfall intensity of the observational data set is in the range of the climate model generated intensities in 52 % (77 %, 79 %, 84 %, 78 %) of the area for hourly (3-hourly, 6-hourly, 12-hourly, 24-hourly) durations. This results in biases between −19.3 % (hourly) to +8.0 % (24-hourly) averaged over the study area. The range, which is introduced by the application of 50 members, shows a spread of −15 % to +18 % around the median. We conclude that our data set shows good agreement with the observations for 3-hourly to 24-hourly durations in large parts of the study area. Though, for hourly duration and topographically complex regions such as the Alps and Norway, we argue that higher-resolution climate model simulations are needed to improve the results. The 10-year return level data are publicly available (Poschlod, 2020; https://doi.org/10.5281/zenodo.3878887).


2020 ◽  
Vol 117 (38) ◽  
pp. 23401-23407
Author(s):  
Peter O. Hopcroft ◽  
Gilles Ramstein ◽  
Thomas A. M. Pugh ◽  
Stephen J. Hunter ◽  
Fabiola Murguia-Flores ◽  
...  

Warm periods in Earth’s history offer opportunities to understand the dynamics of the Earth system under conditions that are similar to those expected in the near future. The Middle Pliocene warm period (MPWP), from 3.3 to 3.0 My B.P, is the most recent time when atmospheric CO2levels were as high as today. However, climate model simulations of the Pliocene underestimate high-latitude warming that has been reconstructed from fossil pollen samples and other geological archives. One possible reason for this is that enhanced non-CO2trace gas radiative forcing during the Pliocene, including from methane (CH4), has not been included in modeling. We use a suite of terrestrial biogeochemistry models forced with MPWP climate model simulations from four different climate models to produce a comprehensive reconstruction of the MPWP CH4cycle, including uncertainty. We simulate an atmospheric CH4mixing ratio of 1,000 to 1,200 ppbv, which in combination with estimates of radiative forcing from N2O and O3, contributes a non-CO2radiative forcing of 0.9W⋅m−2(range 0.6 to 1.1), which is 43% (range 36 to 56%) of the CO2radiative forcing used in MPWP climate simulations. This additional forcing would cause a global surface temperature increase of 0.6 to 1.0 °C, with amplified changes at high latitudes, improving agreement with geological evidence of Middle Pliocene climate. We conclude that natural trace gas feedbacks are critical for interpreting climate warmth during the Pliocene and potentially many other warm phases of the Cenezoic. These results also imply that using Pliocene CO2and temperature reconstructions alone may lead to overestimates of the fast or Charney climate sensitivity.


Sign in / Sign up

Export Citation Format

Share Document