GEOLOGY OF THE VICKSBORO QUADRANGLE, NC: IMPLICATIONS FOR EASTERN PIEDMONT PLUTONS, FAULT ZONES, AND TERRANES

2020 ◽  
Author(s):  
Edward F. Stoddard ◽  
◽  
David E. Blake
Keyword(s):  

The Scottish Caledonides have grown by the accretion of terranes generated somewhere along the Laurentian margin. By the time these terranes had been emplaced along the Scottish sector, they were structurally truncated then reassembled to form an incomplete collage of indirectly related tectonic elements of a destructive margin. The basement to some of these tectonic elements and the basement blocks belonging to the previously accreted Precambrian are of uncertain provenance and a source in the Pan-African craton is possible. As terranes migrate along the orogen they generate in the fault zones and on their periphery a reservoir of mature sediment. This mature sediment is produced because of the recycling produced during the generation and destruction of sedimentary basins developing during terrane translation. At each period of recycling the mature sediments are mixed with less mature sediments yielded from local uplifts generated by the new basin formation. If a large part of the orogen suffers orthogonal closure, giant river systems may form and disperse sediment across terranes. This is likely to have happened during the Devonian-Carboniferous of parts of N. Europe.


Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 122
Author(s):  
Irina Medved ◽  
Elena Bataleva ◽  
Michael Buslov

This paper presents new results of detailed seismic tomography (ST) on the deep structure beneath the Middle Tien Shan to a depth of 60 km. For a better understanding of the detected heterogeneities, the obtained velocity models were compared with the results of magnetotelluric sounding (MTS) along the Kekemeren and Naryn profiles, running parallel to the 74 and 76 meridians, respectively. We found that in the study region the velocity characteristics and geoelectric properties correlate with each other. The high-velocity high-resistivity anomalies correspond to the parts of the Tarim and Kazakhstan-Junggar plates submerged under the Tien Shan. We revealed that the structure of the Middle Tien Shan crust is conditioned by the presence of the Central Tien Shan microcontinent. It manifests itself as two anomalies lying one below the other: the lower low-velocity low-resistivity anomaly, and the upper high-velocity high-resistivity anomaly. The fault zones, limiting the Central Tien Shan microcontinent, appear as low-velocity low-resistivity anomalies. The obtained features indicate the fluid saturation of the fault zones. According to the revealed features of the Central Tien Shan geological structure, it is assumed that the lower-crustal low-velocity layer can play a significant role in the delamination of the mantle part of the submerged plates.


2009 ◽  
Vol 03 (02) ◽  
pp. 77-88 ◽  
Author(s):  
HASANUDDIN Z. ABIDIN ◽  
HERI ANDREAS ◽  
TERUYUKI KATO ◽  
TAKEO ITO ◽  
IRWAN MEILANO ◽  
...  

Along the Java trench the Australian–Oceanic plate is moving and pushing onto and subducting beneath the Java continental crust at a relative motion of about 70 mm/yr in NNE direction. This subduction-zone process imposed tectonic stresses on the fore-arc region offshore and on the land of Java, thus causing the formation of earthquake fault zones to accommodate the plate movement. Historically, several large earthquakes happened in Java, including West Java. This research use GPS surveys method to study the inter-seismic deformation of three active faults in West Java region (i.e. Cimandiri, Lembang and Baribis faults), and the co-seismic and post-seismic deformation related to the May 2006 Yogyakarta and the July 2006 South Java earthquakes. Based on GPS surveys results it was found that the area around Cimandiri, Lembang and Baribis fault zones have the horizontal displacements of about 1 to 2 cm/yr or less. Further research is however still needed to extract the real inter-seismic deformation of the faults from those GPS-derived displacements. GPS surveys have also estimated that the May 2006 Yogyakarta earthquake was caused by the sinistral movement of the (Opak) fault with horizontal co-seismic deformation that generally was less than 10 cm. The post-seismic horizontal deformation of the July 2006 South Java tsunami earthquake has also been estimated using GPS surveys data. In the first year after the earthquake (2006 to 2007), the post-seismic deformation is generally less than 5 cm; and it becomes generally less than 3 cm in the second year (2007 to 2008).


Sign in / Sign up

Export Citation Format

Share Document