Sediment dispersal in an evolving foreland: Detrital zircon geochronology from Upper Jurassic and lowermost Cretaceous strata, Alberta Basin, Canada

2013 ◽  
Vol 125 (5-6) ◽  
pp. 741-755 ◽  
Author(s):  
M. K. Raines ◽  
S. M. Hubbard ◽  
R. B. Kukulski ◽  
A. L. Leier ◽  
G. E. Gehrels
Geosphere ◽  
2021 ◽  
Author(s):  
John I. Ejembi ◽  
Sally L. Potter-McIntyre ◽  
Glenn R. Sharman ◽  
Tyson M. Smith ◽  
Joel E. Saylor ◽  
...  

Middle to Upper Jurassic strata in the Paradox Basin and Central Colorado trough (CCT; south­western United States) record a pronounced change in sediment dispersal from dominantly aeolian deposition with an Appalachian source (Entrada Sandstone) to dominantly fluvial deposi­tion with a source in the Mogollon and/or Sevier orogenic highlands (Salt Wash Member of the Morrison Formation). An enigmatic abundance of Cambrian (ca. 527–519 Ma) grains at this prove­nance transition in the CCT at Escalante Canyon, Colorado, was recently suggested to reflect a local sediment source from the Ancestral Front Range, despite previous interpretations that local base­ment uplifts were largely buried by Middle to Late Jurassic time. This study aims to delineate spatial and tem­poral patterns in provenance of these Jurassic sandstones containing Cambrian grains within the Paradox Basin and CCT using sandstone petrog­raphy, detrital zircon U-Pb geochronology, and detrital zircon trace elemental and rare-earth ele­mental (REE) geochemistry. We report 7887 new U-Pb detrital zircon analyses from 31 sandstone samples collected within seven transects in west­ern Colorado and eastern Utah. Three clusters of zircon ages are consistently present (1.53–1.3 Ga, 1.3–0.9 Ga, and 500–300 Ma) that are interpreted to reflect sources associated with the Appalachian orogen in southeastern Laurentia (mid-continent, Grenville, Appalachian, and peri-Gondwanan terranes). Ca. 540–500 Ma zircon grains are anom­alously abundant locally in the uppermost Entrada Sandstone and Wanakah Formation but are either lacking or present in small fractions in the overlying Salt Wash and Tidwell Members of the Morrison Formation. A comparison of zircon REE geochem­istry between Cambrian detrital zircon and igneous zircon from potential sources shows that these 540–500 Ma detrital zircon are primarily magmatic. Although variability in both detrital and igneous REE concentrations precludes definitive identifica­tion of provenance, several considerations suggest that distal sources from the Cambrian granitic and rhyolitic provinces of the Southern Oklahoma aulacogen is also likely, in addition to a proximal source identified in the McClure Mountain syenite of the Wet Mountains, Colorado. The abundance of Cambrian grains in samples from the central CCT, particularly in the Entrada Sandstone and Wana­kah Formation, suggests northwesterly sediment transport within the CCT, with sediment sourced from Ancestral Rocky Mountains uplifts of the southern Wet Mountains and/or Amarillo-Wichita Mountains in southwestern Oklahoma. The lack of Cambrian grains within the Paradox Basin sug­gests that the Uncompahgre uplift (southwestern Colorado) acted as a barrier to sediment transport from the CCT.


2012 ◽  
Vol 49 (12) ◽  
pp. 1540-1557 ◽  
Author(s):  
David J.W. Piper ◽  
Georgia Pe-Piper ◽  
Mike Tubrett ◽  
Stavros Triantafyllidis ◽  
Greg Strathdee

Sources of Tithonian–Albian sediment in the Scotian Basin are interpreted from detrital zircon geochronology to test previous hypotheses about the sources and pathways of sediment to thick deltaic successions that are important hydrocarbon reservoirs. Sediment provenance influences reservoir quality, but also provides information on tectonism during rifting of the North Atlantic Ocean. More than 760 zircons were dated by laser ablation U–Pb methods from nine offshore wells and one borehole on land and were characterized by external morphology, internal zoning, and Th/U ratio. A Meguma terrane source to the LaHave Platform was confirmed by peaks in detrital zircon abundance at 550–650 Ma, 1.0–1.2 Ga, and ∼2.1 Ga. Samples from the Sable Subbasin show a large peak in detrital zircon abundance at ∼1050 Ma, with lower peaks from 400–650, ∼1480, ∼1650, ∼1860 Ma and 2.7 Ga, characteristic of inboard Appalachian terranes of Laurentide affinity. Many late Paleozoic to Neoproterozoic zircons are euhedral or subhedral, and apparently first cycle, as are a few older zircons that indicate transport from the rising rift shoulder in southern Labrador as far north as the Makkovik Province (∼1860 Ma). About half the zircons are rounded and polycyclic. Samples from the Abenaki Subbasin are similar, but late Paleozoic to Neoproterozoic zircons are rare and ∼40% of the Mesoproterozoic zircons are subhedral, implying a different Laurentide source through the Humber valley. Euhedral–subhedral unzoned zircons yielded two groups of Cretaceous dates: ∼105 Ma from the Cree Member, and ∼120 Ma from the Missisauga Formation.


Sign in / Sign up

Export Citation Format

Share Document