Erosion rates and sediment flux within the Potomac River basin quantified over millennial timescales using beryllium isotopes

2019 ◽  
Vol 131 (7-8) ◽  
pp. 1295-1311 ◽  
Author(s):  
Eric W. Portenga ◽  
Paul R. Bierman ◽  
Charles D. Trodick ◽  
Sophie E. Greene ◽  
Benjamin D. DeJong ◽  
...  
PAMM ◽  
2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Gerson C. Kroiz ◽  
Reetam Majumder ◽  
Matthias K. Gobbert ◽  
Nagaraj K. Neerchal ◽  
Kel Markert ◽  
...  

Eos ◽  
1989 ◽  
Vol 70 (20) ◽  
pp. 594
Author(s):  
Jay Lehr

2014 ◽  
Vol 2 (2) ◽  
pp. 1047-1092 ◽  
Author(s):  
M. Attal ◽  
S. M. Mudd ◽  
M. D. Hurst ◽  
B. Weinman ◽  
K. Yoo ◽  
...  

Abstract. The characteristics of the sediment transported by rivers (e.g., sediment flux, grain size distribution – GSD –) dictate whether rivers aggrade or erode their substrate. They also condition the architecture and properties of sedimentary successions in basins. In this study, we investigate the relationship between landscape steepness and the grain size of hillslope and fluvial sediments. The study area is located within the Feather River Basin in Northern California, and studied basins are underlain exclusively by tonalite lithology. Erosion rates in the study area vary over an order of magnitude, from > 250 mm ka−1 in the Feather River canyon to < 15 mm ka−1 on an adjacent low relief plateau. We find that the coarseness of hillslope sediment increases with increasing hillslope steepness and erosion rates. We hypothesize that, in our soil samples, the measured ten-fold increase in D50 and doubling of the amount of fragments larger than 1 mm when slope increases from 0.38 to 0.83 m m−1 is due to a decrease in the residence time of rock fragments, causing particles to be exposed for shorter periods of time to processes that can reduce grain size. For slopes in excess of 0.7 m m−1, landslides and scree cones supply much coarser sediment to rivers, with D50 and D84 more than one order of magnitude larger than in soils. In the tributary basins of the Feather River, a prominent break in slope developed in response to the rapid incision of the Feather River. Downstream of the break in slope, fluvial sediment grain size increases, due to an increase in flow competence (mostly driven by channel steepening) but also by a change in sediment source and in sediment dynamics: on the plateau upstream of the break in slope, rivers transport easily mobilised fine-grained sediment derived exclusively from soils. Downstream of the break in slope, mass wasting processes supply a wide range of grain sizes that rivers entrain selectively, depending on the competence of their flow. Our results also suggest that in this study site, hillslopes respond rapidly to an increase in the rate of base-level lowering compared to rivers.


Author(s):  
Cherie V. Miller ◽  
Janet M. Denis ◽  
Scott W. Ator ◽  
John W. Brakebill

Sign in / Sign up

Export Citation Format

Share Document