scholarly journals CO2-induced climate forcing on the fire record during the initiation of Cretaceous oceanic anoxic event 2

2019 ◽  
Vol 132 (1-2) ◽  
pp. 321-333 ◽  
Author(s):  
Sarah J. Baker ◽  
Claire M. Belcher ◽  
Richard S. Barclay ◽  
Stephen P. Hesselbo ◽  
Jiří Laurin ◽  
...  

Abstract Cretaceous oceanic anoxic event 2 (OAE2) is thought to have been contemporary with extensive volcanism and the release of large quantities of volcanic CO2 capable of triggering marine anoxia through a series of biogeochemical feedbacks. High-resolution reconstructions of atmospheric CO2 concentrations across the initiation of OAE2 suggest that there were also two distinct pulses of CO2 drawdown coeval with increased organic carbon burial. These fluctuations in CO2 likely led to significant climatic changes, including fluctuations in temperatures and the hydrological cycle. Paleofire proxy records suggest that wildfire was a common occurrence throughout the Cretaceous Period, likely fueled by the estimated high atmospheric O2 concentrations at this time. However, over geological time scales, the likelihood and behavior of fire are also controlled by other factors such as climate, implying that CO2-driven climate changes should also be observable in the fossil charcoal record. We tested this hypothesis and present a high-resolution study of fire history through the use of fossil charcoal abundances across the OAE2 onset, and we compared our records to the estimated CO2 fluctuations published from the same study sites. Our study illustrates that inferred wildfire activity appears to relate to changes in CO2 occurring across the onset of OAE2, where periods of CO2 drawdown may have enabled an increase in fire activity through suppression of the hydrological cycle. Our study provides further insight into the relationships between rapid changes in the carbon cycle, climate, and wildfire activity, illustrating that CO2 and climate changes related to inferred wildfire activity can be detected despite the estimated high Cretaceous atmospheric O2 concentrations.

2022 ◽  
pp. 103735
Author(s):  
Hongjin Chen ◽  
Zhaokai Xu ◽  
Germain Bayon ◽  
Dhongil Lim ◽  
Sietske J. Batenburg ◽  
...  

Geology ◽  
2013 ◽  
Vol 42 (2) ◽  
pp. 123-126 ◽  
Author(s):  
N. A. G. M. van Helmond ◽  
A. Sluijs ◽  
G.-J. Reichart ◽  
J. S. Sinninghe Damste ◽  
C. P. Slomp ◽  
...  

2004 ◽  
Vol 228 (3-4) ◽  
pp. 465-482 ◽  
Author(s):  
Marcel M.M. Kuypers ◽  
Lucas J. Lourens ◽  
W. Irene C. Rijpstra ◽  
Richard D. Pancost ◽  
Ivar A. Nijenhuis ◽  
...  

2016 ◽  
Author(s):  
Niels A.G.M. van Helmond ◽  
Appy Sluijs ◽  
Nina M. Papadomanolaki ◽  
A.Guy Plint ◽  
Darren R. Gröcke ◽  
...  

Abstract. Oceanic Anoxic Event 2 (OAE2), a ~600 kyr episode close to the Cenomanian-Turonian boundary (ca. 94 Ma), is characterized by widespread marine anoxia and ranks amongst the warmest intervals of the Phanerozoic. The early stages of OAE2 are, however, marked by an episode of widespread transient cooling and bottom water oxygenation: the Plenus Cold Event. This cold spell has been linked to a decline in atmospheric pCO2, resulting from enhanced global organic carbon burial. To investigate the response of phytoplankton to this marked and rapid climate shift we examined the biogeographical response of dinoflagellates to the Plenus Cold Event. Our study is based on a newly generated geochemical and palynological dataset from a high-latitude Northern Hemisphere site, Pratts Landing (western Alberta, Canada). We combine this data with a semi-quantitative global compilation of the stratigraphic distribution of dinoflagellate cyst taxa. The data show that dinoflagellate cysts grouped in the Cyclonephelium compactum-membraniphorum morphological plexus migrated from high- to mid-latitudes during the Plenus Cold Event, making it the sole widely found (micro)fossil to mark this cold spell. In addition to earlier reports from regional metazoan migrations during the Plenus Cold Event, our findings illustrate the effect of rapid climate change on the global biogeographical dispersion of phytoplankton.


2019 ◽  
Vol 52 (1) ◽  
pp. 97-129 ◽  
Author(s):  
Andrew S. Gale ◽  
Hugh C. Jenkyns ◽  
Harilaos Tsikos ◽  
Yvonne van Breugel ◽  
Jaap S. Sinninghe Damsté ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document