scholarly journals Regional fault-controlled shallow dolomitization of the Middle Cambrian Cathedral Formation by hydrothermal fluids fluxed through a basal clastic aquifer

Author(s):  
Jack Stacey ◽  
Hilary Corlett ◽  
Greg Holland ◽  
Ardiansyah Koeshidayatullah ◽  
Chunhui Cao ◽  
...  

This study evaluates examples of hydrothermal dolomitization in the Middle Cambrian Cathedral Formation of the Western Canadian Sedimentary Basin. Kilometer-scale dolomite bodies within the Cathedral Formation carbonate platform are composed of replacement dolomite (RD), with saddle dolomite-cemented (SDC) breccias occurring along faults. These are overlain by the Stephen Formation (Burgess Shale equivalent) shale. RD is crosscut by low-amplitude stylolites cemented by SDC, indicating that dolomitization occurred at very shallow depths (<1 km) during the Middle Cambrian. Clumped isotope data from RD and SDC indicate that dolomitizing fluid temperatures were >230 °C, which demonstrates that dolomitization occurred from hydrothermal fluids. Assuming a geothermal gradient of 40 °C/km, due to rift-related basin extension, fluids likely convected along faults that extended to ∼6 km depth. The negative cerium anomalies of RD indicate that seawater was involved in the earliest phases of replacement dolomitization. 84Kr/36Ar and 132Xe/36Ar data are consistent with serpentinite-derived fluids, which became more dominant during later phases of replacement dolomitization/SDC precipitation. The elevated 87Sr/86Sr of dolomite phases, and its co-occurrence with authigenic quartz and albite, likely reflects fluid interaction with K-feldspar in the underlying Gog Group before ascending faults to regionally dolomitize the Cathedral Formation. In summary, these results demonstrate the important role of a basal clastic aquifer in regional-scale fluid circulation during hydrothermal dolomitization. Furthermore, the presence of the Stephen Formation shale above the platform facilitated the build-up of fluid pressure during the final phase of dolomitization, leading to the formation of saddle dolomite-cemented breccias at much shallower depths than previously realized.

2001 ◽  
Vol 21 (3) ◽  
pp. 222-230 ◽  
Author(s):  
Rolf K. Reed ◽  
Ansgar Berg ◽  
Eli-Anne B. Gjerde ◽  
Kristofer Rubin

Author(s):  
Jon R. Ineson ◽  
John S. Peel

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Ineson, J. R., & Peel, J. S. (1997). Cambrian shelf stratigraphy of North Greenland. Geology of Greenland Survey Bulletin, 173, 1-120. https://doi.org/10.34194/ggub.v173.5024 _______________ The Lower Palaeozoic Franklinian Basin is extensively exposed in northern Greenland and the Canadian Arctic Islands. For much of the early Palaeozoic, the basin consisted of a southern shelf, bordering the craton, and a northern deep-water trough; the boundary between the shelf and the trough shifted southwards with time. In North Greenland, the evolution of the shelf during the Cambrian is recorded by the Skagen Group, the Portfjeld and Buen Formations and the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups; the lithostratigraphy of these last three groups forms the main focus of this paper. The Skagen Group, a mixed carbonate-siliciclastic shelf succession of earliest Cambrian age was deposited prior to the development of a deep-water trough. The succeeding Portfjeld Formation represents an extensive shallow-water carbonate platform that covered much of the shelf; marked differentiation of the shelf and trough occurred at this time. Following exposure and karstification of this platform, the shelf was progressively transgressed and the siliciclastics of the Buen Formation were deposited. From the late Early Cambrian to the Early Ordovician, the shelf showed a terraced profile, with a flat-topped shallow-water carbonate platform in the south passing northwards via a carbonate slope apron into a deeper-water outer shelf region. The evolution of this platform and outer shelf system is recorded by the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups. The dolomites, limestones and subordinate siliciclastics of the Brønlund Fjord and Tavsens Iskappe Groups represent platform margin to deep outer shelf environments. These groups are recognised in three discrete outcrop belts - the southern, northern and eastern outcrop belts. In the southern outcrop belt, from Warming Land to south-east Peary Land, the Brønlund Fjord Group (Lower-Middle Cambrian) is subdivided into eight formations while the Tavsens Iskappe Group (Middle Cambrian - lowermost Ordovician) comprises six formations. In the northern outcrop belt, from northern Nyeboe Land to north-west Peary Land, the Brønlund Fjord Group consists of two formations both defined in the southern outcrop belt, whereas a single formation makes up the Tavsens Iskappe Group. In the eastern outcrop area, a highly faulted terrane in north-east Peary Land, a dolomite-sandstone succession is referred to two formations of the Brønlund Fjord Group. The Ryder Gletscher Group is a thick succession of shallow-water, platform interior carbonates and siliciclastics that extends throughout North Greenland and ranges in age from latest Early Cambrian to Middle Ordovician. The Cambrian portion of this group between Warming Land and south-west Peary Land is formally subdivided into four formations.The Lower Palaeozoic Franklinian Basin is extensively exposed in northern Greenland and the Canadian Arctic Islands. For much of the early Palaeozoic, the basin consisted of a southern shelf, bordering the craton, and a northern deep-water trough; the boundary between the shelf and the trough shifted southwards with time. In North Greenland, the evolution of the shelf during the Cambrian is recorded by the Skagen Group, the Portfjeld and Buen Formations and the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups; the lithostratigraphy of these last three groups forms the main focus of this paper. The Skagen Group, a mixed carbonate-siliciclastic shelf succession of earliest Cambrian age was deposited prior to the development of a deep-water trough. The succeeding Portfjeld Formation represents an extensive shallow-water carbonate platform that covered much of the shelf; marked differentiation of the shelf and trough occurred at this time. Following exposure and karstification of this platform, the shelf was progressively transgressed and the siliciclastics of the Buen Formation were deposited. From the late Early Cambrian to the Early Ordovician, the shelf showed a terraced profile, with a flat-topped shallow-water carbonate platform in the south passing northwards via a carbonate slope apron into a deeper-water outer shelf region. The evolution of this platform and outer shelf system is recorded by the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups. The dolomites, limestones and subordinate siliciclastics of the Brønlund Fjord and Tavsens Iskappe Groups represent platform margin to deep outer shelf environments. These groups are recognised in three discrete outcrop belts - the southern, northern and eastern outcrop belts. In the southern outcrop belt, from Warming Land to south-east Peary Land, the Brønlund Fjord Group (Lower-Middle Cambrian) is subdivided into eight formations while the Tavsens Iskappe Group (Middle Cambrian - lowermost Ordovician) comprises six formations. In the northern outcrop belt, from northern Nyeboe Land to north-west Peary Land, the Brønlund Fjord Group consists of two formations both defined in the southern outcrop belt, whereas a single formation makes up the Tavsens Iskappe Group. In the eastern outcrop area, a highly faulted terrane in north-east Peary Land, a dolomite-sandstone succession is referred to two formations of the Brønlund Fjord Group. The Ryder Gletscher Group is a thick succession of shallow-water, platform interior carbonates and siliciclastics that extends throughout North Greenland and ranges in age from latest Early Cambrian to Middle Ordovician. The Cambrian portion of this group between Warming Land and south-west Peary Land is formally subdivided into four formations.


Insects ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 12
Author(s):  
Stefanie Fischnaller ◽  
Martin Parth ◽  
Manuel Messner ◽  
Robert Stocker ◽  
Christine Kerschbamer ◽  
...  

Apple proliferation (AP) is one of the economically most important diseases in European apple cultivation. The disease is caused by the cell-wall-less bacterium ’ Candidatus Phytoplasma mali’, which is transmitted by Cacopsylla picta (Foerster) and Cacopsylla melanoneura (Foerster) (Hemiptera: Psylloidea). In South Tyrol (Italy), severe outbreaks were documented since the 1990s. Infestation rates of AP do not always correlate with the population densities of the confirmed vectors, implying the presence of other, so far unknown, hemipterian vectors. By elucidating the species community of Auchenorrhyncha (Insecta: Hemiptera) at a regional scale, more than 31,000 specimens were captured in South Tyrolean apple orchards. The occurrence of 95 species was confirmed, whereas fourteen species are new records for this territory. Based on the faunistical data, more than 3600 individuals out of 25 species were analyzed using quantitative PCR to assess the presence of AP phytoplasma. The pathogen was sporadically detected in some individuals of different species, for example in Stictocephala bisonia Kopp and Yonk (Hemiptera: Membracidae). However, the concentration of phytoplasma was much lower than in infected C. picta and C. melanoneura captured in the same region, confirming the role of the latter mentioned psyllids as the main insect vectors of AP- phytoplasma in South Tyrol.


2004 ◽  
Vol 94 (2) ◽  
pp. 111-121 ◽  
Author(s):  
P.A.V. Borges ◽  
V.K. Brown

AbstractThe arthropod species richness of pastures in three Azorean islands was used to examine the relationship between local and regional species richness over two years. Two groups of arthropods, spiders and sucking insects, representing two functionally different but common groups of pasture invertebrates were investigated. The local–regional species richness relationship was assessed over relatively fine scales: quadrats (= local scale) and within pastures (= regional scale). Mean plot species richness was used as a measure of local species richness (= α diversity) and regional species richness was estimated at the pasture level (= γ diversity) with the ‘first-order-Jackknife’ estimator. Three related issues were addressed: (i) the role of estimated regional species richness and variables operating at the local scale (vegetation structure and diversity) in determining local species richness; (ii) quantification of the relative contributions of α and β diversity to regional diversity using additive partitioning; and (iii) the occurrence of consistent patterns in different years by analysing independently between-year data. Species assemblages of spiders were saturated at the local scale (similar local species richness and increasing β-diversity in richer regions) and were more dependent on vegetational structure than regional species richness. Sucking insect herbivores, by contrast, exhibited a linear relationship between local and regional species richness, consistent with the proportional sampling model. The patterns were consistent between years. These results imply that for spiders local processes are important, with assemblages in a particular patch being constrained by habitat structure. In contrast, for sucking insects, local processes may be insignificant in structuring communities.


2021 ◽  
Author(s):  
Gilby Jepson ◽  
Barbara Carrapa ◽  
Jack Gillespie ◽  
Ran Feng ◽  
Peter DeCelles ◽  
...  

<p>Central Asia is one of the most tectonically active and orographically diverse regions in the world and is the location of the highest topography on Earth resulting from major plate tectonic collisional events. Yet the role of tectonics versus climate on erosion remains one of the greatest debates of our time. We present the first regional scale analysis of 2526 published low-temperature thermochronometric dates from Central Asia spanning the Altai-Sayan, Tian Shan, Tibet, Pamir, and Himalaya. We compare these dates to tectonic processes (proximity to tectonic boundaries, crustal thickness, seismicity) and state-of-the-art paleoclimate simulations in order to constrain the relative influences of climate and tectonics on the topographic architecture and erosion of Central Asia. Predominance of pre-Cenozoic ages in much of the interior of central Asia suggests that significant topography was created prior to the India-Eurasia collision and implies limited subsequent erosion. Increasingly young cooling ages are associated with increasing proximity to active tectonic boundaries, suggesting a first-order control of tectonics on erosion. However, areas that have been sheltered from significant precipitation for extensive periods of time retain old cooling ages. This suggests that ultimately climate is the great equalizer of erosion. Climate plays a key role by enhancing erosion in areas with developed topography and high precipitation such as the Tian Shan and Altai-Sayan during the Mesozoic and the Himalaya during the Cenozoic. Older thermochronometric dates are associated with sustained aridity following more humid periods.</p>


2020 ◽  
Author(s):  
Carolyn Boulton ◽  
Marcel Mizera ◽  
Maartje Hamers ◽  
Inigo Müller ◽  
Martin Ziegler ◽  
...  

<p>The Hungaroa Fault Zone (HFZ), an inactive thrust fault along the Hikurangi Subduction Margin, accommodated large displacements (~4–10 km) at the onset of subduction in the early Miocene. Within a 40 m-wide high-strain fault core, calcareous mudstones and marls display evidence for mixed-mode viscous flow and brittle fracture, including: discrete faults; extensional veins containing stretched calcite fibers; shear veins with calcite slickenfibers; calcite foliation-boudinage structures; calcite pressure fringes; dark dissolution seams; stylolites; embayed calcite grains; and an anastomosing phyllosilicate foliation.</p><p>Multiple observations indicate a heterogeneous stress state within the fault core. Detailed optical and electron backscatter diffraction-based texture analysis of syntectonic calcite veins and isoclinally folded limestone layers within the fault core reveal that calcite grains have experienced intracrystalline plasticity and interface mobility, and local subgrain development and dynamic recrystallisation. The recrystallized grain size in two calcite veins of 6.0±3.9 µm (n=1339; 1SD; HFZ-H4-5.2m_A;) and 7.2±4.2µm (n=406; 1SD; HFZ-H4-19.9m) indicate high differential stresses (~76–134 MPa). Hydrothermal friction experiments on a foliated, calcareous mudstone yield a friction coefficient of μ≈0.35. Using this friction coefficient in the Mohr-Coulomb failure criterion yields a maximum differential stress of 55 MPa at 4 km depth, assuming a minimum principal stress equal to the vertical stress, an average sediment density of 2350 kg/m<sup>3</sup>, and hydrostatic pore fluid pressure. Interestingly, calcareous microfossils within the foliated mudstone matrix are undeformed. Moreover, calcite veins are oriented both parallel to and highly oblique to the foliation, indicating spatial and/or temporal variations in the maximum principle stress azimuth.</p><p>To further constrain HFZ deformation conditions, clumped isotope geothermometry was performed on six syntectonic calcite veins, yielding formation temperatures of 79.3±19.9°C (95% confidence interval). These temperatures are well below those at which dynamic recrystallisation of calcite is anticipated and exclude shear heating and the migration of hotter fluids as an explanation for dynamic recrystallisation of calcite at shallow crustal levels (<5 km depth).</p><p>Our results indicate that: (1) stresses are spatiotemporally heterogeneous in crustal fault zones containing mixtures of competent and incompetent minerals; (2) heterogeneous deformation mechanisms, including frictional sliding, pressure solution, dynamic recrystallization, and mixed-mode fracturing accommodate slip in shallow crustal fault zones; and (3) brittle fractures play a pivotal role in fault zone deformation by providing fluid pathways that promote fluid-enhanced recovery and dynamic recrystallisation in the deforming calcite at remarkably low temperatures. Together, field geology, microscopy, and clumped isotope geothermometry provide a powerful method for constraining the multiscale slip behavior of large-displacement fault zones.</p>


Sign in / Sign up

Export Citation Format

Share Document