scholarly journals Supplemental Material: A 1000-yr-old tsunami in the Indian Ocean points to greater risk for East Africa

2020 ◽  
Author(s):  
Vittorio Maselli

Additional information on the study area (Section S1), radiocarbon dating of the samples (Section S2), grain size analysis (Section S3), paleoenvironmental reconstructions (Section S4), tsunami modeling (Section S5), and eyewitnesses of the 2004 tsunami in Pangani (Section S6), and the Ethics statement (Section S7).<br>

2020 ◽  
Author(s):  
Vittorio Maselli

Additional information on the study area (Section S1), radiocarbon dating of the samples (Section S2), grain size analysis (Section S3), paleoenvironmental reconstructions (Section S4), tsunami modeling (Section S5), and eyewitnesses of the 2004 tsunami in Pangani (Section S6), and the Ethics statement (Section S7).<br>


2017 ◽  
Vol 2 (3) ◽  
pp. 49
Author(s):  
Purna Sulastya Putra ◽  
Septriono Hari Nugroho

<strong>Subsurface sediment distribution in the Sumba Waters, East Nusa Tenggara.</strong> Marine geological survey of the Ekspedisi Widya Nusantara 2016 was conducted in the Sumba Waters on 4 to 26 August 2016 using  Baruna Jaya VIII research vessel. The aim of this survey was to reveal the type and characteristics of the subsurface sediments of the Sumba Waters. A total of 13 samples were taken from the different depth in the subsurface bottom of the sea using grabbing methode with box corer. Grain size analysis were conducted using Mastersizer 2000 to understand the characteristics and the sediment type distribution. In general, the type of the subsurface sediment in the Sumba Waters is ranging from medium to very coarse sandy silt. Distribution of the subsurface sediments is correlated to depths. Grain size of the sediments in the Sumba Strait is coarser than in the western and southern of Sumba Island that directly connected to the Indian Ocean. Distribution of the subsurface sediment showing that the sediment, which are distributed further away from the coast is poorly sorted. The deposition of the subsurface-sea sediment is interpreted to represent a calm, and slow sedimentation mechanism under uniform suspension process.


2006 ◽  
Vol 29 (1) ◽  
pp. 420-421
Author(s):  
Andrea D Hawkes ◽  
Micheal Bird ◽  
Susan Cowie ◽  
Benjamin Horton ◽  
Jonathan Nott ◽  
...  

Minerals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Srećko Bevandić ◽  
Rosie Blannin ◽  
Jacqueline Vander Auwera ◽  
Nicolas Delmelle ◽  
David Caterina ◽  
...  

Mine wastes and tailings derived from historical processing may contain significant contents of valuable metals due to processing being less efficient in the past. The Plombières tailings pond in eastern Belgium was selected as a case study to determine mineralogical and geochemical characteristics of the different mine waste materials found at the site. Four types of material were classified: soil, metallurgical waste, brown tailings and yellow tailings. The distribution of the mine wastes was investigated with drill holes, pit-holes and geophysical methods. Samples of the materials were assessed with grain size analysis, and mineralogical and geochemical techniques. The mine wastes dominantly consist of SiO2, Al2O3 and Fe2O3. The cover material, comprising soil and metallurgical waste is highly heterogeneous in terms of mineralogy, geochemistry and grain size. The metallurgical waste has a high concentration of metals (Zn: 0.1 to 24 wt.% and Pb: 0.1 to 10.1 wt.%). In the tailings materials, Pb and Zn vary from 10 ppm to 8.5 wt.% and from 51 ppm to 4 wt.%, respectively. The mining wastes comprises mainly quartz, amorphous phases and phyllosilicates, with minor contents of Fe-oxide and Pb- and Zn-bearing minerals. Based on the mineralogical and geochemical properties, the different potential applications of the four waste material types were determined. Additionally, the theoretical economic potential of Pb and Zn in the mine wastes was estimated.


2021 ◽  
Vol 11 (6) ◽  
pp. 2799
Author(s):  
Yanping Chen ◽  
Wenzhe Lyu ◽  
Tengfei Fu ◽  
Yan Li ◽  
Liang Yi

The Huanghe River (Yellow River) is the most sediment laden river system in the world, and many efforts have been conducted to understand modern deltaic evolution in response to anthropological impacts. However, the natural background and its linkage to climatic changes are less documented in previous studies. In this work, we studied the sediments of core YDZ–3 and marine surface samples by grain-size analysis to retrieve Holocene dynamics of the Huanghe River delta in detail. The main findings are as follows: The mean value of sediment grain size of the studied core is 5.5 ± 0.9 Φ, and silt and sand contents are 5.2 ± 2.3% and 8.2 ± 5.3%, respectively, while the variance of clay particles is relatively large with an average value of 86.4 ± 8.5%. All grain-size data can be mathematically partitioned by a Weibull-based function formula, and three subgroups were identified with modal sizes of 61.1 ± 28.9 μm, 30.0 ± 23.9 μm, and 2.8 ± 1.6 μm, respectively. There are eight intervals with abrupt changes in modal size of core YDZ–3, which can be correlated to paleo-superlobe migration of the Huanghe River in the Holocene. Based on these observations, the presence of seven superlobes in the history are confirmed for the first time and their ages are well constrained in this study, including Paleo-Superlobes Lijin (6400–5280 yr BP), Huanghua (4480–4190 yr BP), Jugezhuang (3880–3660 yr BP), Shajinzi (3070–2870 yr BP), Nigu (2780–2360 yr BP), Qikou (2140–2000 yr BP), and Kenli (1940–1780 and 1700–1650 yr BP). By tuning geomorphological events to a sedimentary proxy derived from core YDZ–3 and comparing to various paleoenvironmental changes, we proposed that winter climate dominated Holocene shifts of the Huanghe River delta on millennial timescales, while summer monsoons controlled deltaic evolution on centennial timescales.


1996 ◽  
Vol 2 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Andrew J. C. Hogg ◽  
Alan W. Mitchell ◽  
Susan Young

Sign in / Sign up

Export Citation Format

Share Document