scholarly journals Supplemental Material: A new model for the optimal structural context for giant porphyry copper deposit formation

Author(s):  
Jose Piquer ◽  
et al.

Tables S1 and S2, a summary of all the relevant data from mineral deposits and active volcanic systems compiled for testing the model presented in this work.<br>

2021 ◽  
Author(s):  
Jose Piquer ◽  
et al.

Tables S1 and S2, a summary of all the relevant data from mineral deposits and active volcanic systems compiled for testing the model presented in this work.<br>


2015 ◽  
Vol 8 (3) ◽  
pp. 210-215 ◽  
Author(s):  
Richard W. Henley ◽  
Penelope L. King ◽  
Jeremy L. Wykes ◽  
Christian J. Renggli ◽  
Frank J. Brink ◽  
...  

Geology ◽  
2021 ◽  
Author(s):  
José Piquer ◽  
Pablo Sanchez-Alfaro ◽  
Pamela Pérez-Flores

Porphyry-type deposits are the main global source of copper and molybdenum. An improved understanding of the most favorable structural settings for the emplacement of these deposits is necessary for successful exploration, particularly considering that most future discoveries will be made under cover based on conceptual target generation. A common view is that porphyry deposits are preferentially emplaced in pull-apart basins within strike-slip fault systems that favor local extension within a regional compressive to transpressive tectonic regime. However, the role of such a structural context in magma storage and evolution in the upper crust remains unclear. In this work, we propose a new model based on the integration of structural data and the geometry of magmatic-hydrothermal systems from the main Andean porphyry Cu-Mo metallogenic belts and from the active volcanic arc of southern Chile. We suggest that the magma differentiation and volatile accumulation required for the formation of a porphyry deposit is best achieved when the fault system controlling magma ascent is strongly misoriented for reactivation with respect to the prevailing stress field. When magmas and fluids are channeled by faults favorably oriented for extension (approximately normal to σ3), they form sets of parallel, subvertical dikes and veins, which are common both during the late stages of the evolution of porphyry systems and in the epithermal environment. This new model has direct implications for conceptual mineral exploration.


2017 ◽  
Vol 112 (7) ◽  
pp. 1653-1672 ◽  
Author(s):  
Anne Schöpa ◽  
Catherine Annen ◽  
John H. Dilles ◽  
R. Stephen J. Sparks ◽  
Jon D. Blundy

Abstract Many porphyry copper deposits are associated with granitoid plutons. Porphyry copper deposit genesis is commonly attributed to degassing of pluton-forming intermediate to silicic magma chambers during slow cooling and crystallization. We use numerical simulations of thermal evolution during pluton growth to investigate the links between pluton construction, magma accumulation and solidification, volatile release, and porphyry copper deposit formation. The Jurassic Yerington batholith, Nevada, serves as a case study because of its exceptional exposure, revealing the geometry of three main intrusions. The last intrusion, the Luhr Hill granite, is associated with economic porphyry copper deposits localized over cupolas where dikes and fluid flow were focused. Our simulations for the conceptual model linking porphyry copper deposits with the presence of large, highly molten magma chambers show that the Luhr Hill granite must have been emplaced at a vertical thickening rate of several cm/yr or more. This magma emplacement rate is much higher than the time-averaged formation rates of other batholiths reported in the literature. Such low rates, although common, do not lead to magma accumulation and might be one of the reasons why many granitoid plutons are barren. Based on our results, we formulate the new testable hypothesis of a link between porphyry copper deposit formation and the emplacement time scale of the associated magma intrusion.


Sign in / Sign up

Export Citation Format

Share Document