scholarly journals Supplemental Material: Trace-element and Sr and Nd isotopic geochemistry of Cretaceous bentonites in Wyoming and South Dakota tracks magmatic processes during eastward migration of Farallon arc plutons

Author(s):  
Jeffrey S. Hannon ◽  
et al.

Geochemical data, Sr isotope data, and Nd isotope data.

2018 ◽  
Vol 481 (1) ◽  
pp. 277-298 ◽  
Author(s):  
Masatsugu Ogasawara ◽  
Mayuko Fukuyama ◽  
Rehanul Haq Siddiqui ◽  
Ye Zhao

AbstractThe Mansehra granite in the NW Himalaya is a typical Lesser Himalayan granite. We present here new whole-rock geochemistry, Rb–Sr and Sm–Nd isotope data, together with zircon U–Pb ages and Hf isotope data, for the Mansehra granite. Geochemical data for the granite show typical S-type characteristics. Zircon U–Pb dating yields 206Pb/238U crystallization ages of 483–476 Ma. The zircon grains contain abundant inherited cores and some of these show a clear detrital origin. The 206Pb/238U ages of the inherited cores in the granite cluster in the ranges 889–664, 1862–1595 and 2029 Ma. An age of 664 Ma is considered to be the maximum age of the sedimentary protoliths. Thus the Late Neoproterozoic to Cambrian sedimentary rocks must be the protolith of the Mansehra granitic magma. The initial Sr isotope ratios are high, ranging from 0.7324 to 0.7444, whereas the εNd(t) values range from −9.2 to −8.6, which strongly suggests a large contribution of old crustal material to the protoliths. The two-stage Nd model ages and zircon Hf model ages are Paleoproterozoic, indicating that the protolith sediments were derived from Paleoproterozoic crustal components.


2021 ◽  
Author(s):  
M.R. Cecil ◽  
et al.

<div>Includes sample location information, whole rock geochemical data, and individual zircon trace element, Lu-Hf isotope, and O isotope data.<br></div>


2003 ◽  
Vol 67 (5) ◽  
pp. 831-853 ◽  
Author(s):  
R. Halama ◽  
T. Wenzel ◽  
B. G. J. Upton ◽  
W. Siebel ◽  
G. Markl

AbstractBasalts from the volcano-sedimentary Eriksfjord Formation (Gardar Province, South Greenland) were erupted at around 1.2 Ga into rift-related graben structures. The basalts have compositions transitional between tholeiite and alkaline basalt with MgO contents <7 wt.% and they display LREE-enrichment relative to a chondritic source. Most of the trace element and REE characteristics are similar to those of basalts derived from OIB-like mantle sources. Initial 87Sr/86Sr ratios of clinopyroxene separates range from 0.70278 to 0.70383 and initial ϵNd values vary from –3.2 to +2.1. The most unradiogenic samples overlap with the field defined by carbonatites of similar age and can be explained by mixing of isotopically depleted and enriched mantle components. Using AFC modelling equations, the Sr-Nd isotope data of the more radiogenic basalts can successfully be modelled by addition of <5% lower crustal granulite-facies gneisses as contaminants. δ18Ov-smow values of separated clinopyroxene range from +5.2 to +6.0% and fall within the range of typical mantle-derived rocks. However, up to 10% mixing with an average lower crustal component are permitted by the data.


1979 ◽  
Vol 16 (4) ◽  
pp. 809-815 ◽  
Author(s):  
S. A. Drury

Trace element data, including rare-earth elements, for six granitic rocks and two metasediments from the Archaean granite–greenstone terrain of Yellowknife, Northwest Territories are presented. Three granodiorites from the synkinematic Western and South-east plutons show similar Rb, Sr, Th, Rb/Sr, and K/Rb to many high level granodiorites, but are enriched in Ba. Their rare-earth element (REE) patterns show enrichment of light REE relative to heavy REE, and lack Eu anomalies. These features, together with Sr isotope data, are compatible with their origin by partial melting of mantle depth garnet-bearing basaltic source rocks, and little if any detectable fractionation of the rising magma. Potassic granites from post-kinematic plutons, such as the Prosperous Lake granite, are enriched in Th, depleted in Sr and Eu, and have very high Rb/Sr ratios and low K/Rb ratios. Their REE patterns, except for Eu, are very similar to those of metasediments which they intrude. These features, together with Sr isotope data, suggest that high degrees of partial melting of metasediments, leaving a plagioclase-rich residue, are the most likely origin for the post-kinematic granites. The REE patterns of the Archaean metasediments, in particular their high CeN/YbN ratios, suggest that they contain a high proportion of material derived from earlier sialic crust, and that local metavolcanic rocks are not clearly reflected in the composition of the stratigraphically younger metasediments.


1999 ◽  
Vol 36 (6) ◽  
pp. 985-997 ◽  
Author(s):  
K R Royse ◽  
S R Noble ◽  
J Tarney ◽  
A C Cadman

The marginal mafic granulites that locally border the Nain Plutonic Suite (NPS) have a range of initial Nd-isotope ratios that overlap with that of the NPS anorthosites and associated Nain dykes. The similarity in Nd-isotope data suggests that gneissic Archaean country rocks have contaminated all the anorthosites, marginal mafic granulites, and dykes. Sr-isotope data for the mafic granulites and dykes support a country rock contamination scenario but preclude wholesale assimilation of rocks such as the host Archaean tonalite gneisses as the sole contaminant. Initial epsilonSr values of +10 to +403 and +0.9 to +242 for the mafic granulites and dykes, respectively, are significantly higher than values for NPS country rocks examined thus far. The elevated initial εSr values are therefore interpreted to result from the introduction of radiogenic Sr into the granulites and dykes via Sr-rich fluids, generated by the breakdown of Rb-rich mineral phases such as biotite in the country rocks during NPS.


Author(s):  
Jeffrey S. Hannon ◽  
Craig Dietsch ◽  
Warren D. Huff

Bentonite beds, which are clay deposits produced by the submarine alteration of volcanic tephra, preserve millions of years of volcanic products linked to magmatic systems for which records are otherwise lost through erosion and alteration. Cretaceous strata from the Bighorn Basin, Wyoming, and southwestern South Dakota contain bentonites that originated from arc magmatism produced by subduction of the Farallon plate. We analyzed the bulk major- and trace-element geochemistry, and the 87Sr/86Sr (n = 87) and 143Nd/144Nd (n = 26) isotopic compositions of individual bentonite beds from these areas spanning 40 m.y. of volcanism to recover signals of magmatic processes and to attempt to trace bentonite geochemical and isotopic signatures to contemporaneous Cordilleran plutonic rocks. Using multiple immobile elements (e.g., Zr, TiO2, Nb, Ta, and rare earth elements), distinct temporal trends show variations in the effects of mineral fractionation and changes in crustal thickness. Bentonite Sr and Nd isotopic compositions allow ash beds to be correlated with specific batholithic complexes in Idaho and western Montana. With this data set, we observed the following: (1) The volcanic arc migrated across the 0.706 isopleth between 115 and 105 Ma; (2) between 105 and 95 Ma, magmatism stalled in central Idaho and was supported through significant MASH (mixing-assimilation-storage-homogenization) processing; (3) by 85 Ma, a shallowing subduction angle resulted in the eastward migration of the volcanic front into western Montana while volcanism in Idaho diminished; and (4) around 75 Ma, evidence of Idaho volcanism is lost. Montana plutonism continued with significant assimilation of radiogenic basement and regional centers of local magma emplacement (i.e., Pioneer batholith).


2006 ◽  
Vol 70 (18) ◽  
pp. A183
Author(s):  
L. Francalanci ◽  
I. Nardini ◽  
M. Tiepolo ◽  
D.G. Chertkoff ◽  
D.J. Morgan ◽  
...  

2021 ◽  
Author(s):  
M.R. Cecil ◽  
et al.

<div>Includes sample location information, whole rock geochemical data, and individual zircon trace element, Lu-Hf isotope, and O isotope data.<br></div>


2019 ◽  
Author(s):  
Stephan R. Hlohowskyj ◽  
◽  
Mona-Liza C. Sirbescu ◽  
James J. Student ◽  
Niels Hulsbosch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document