Interpretation of Vitrinite Reflectance Measurements in Sedimentary Rocks and Determination of Burial History Using Vitrinite Reflectance and Authigenic Minerals

Author(s):  
John R. Castaño ◽  
Dennis M. Sparks
2019 ◽  
Vol 4 (2) ◽  
pp. 58
Author(s):  
Yohanes Ardhito Triyogo Varianto ◽  
Sugeng Sapto Surjono ◽  
Salahuddin Salahuddin

Akimeugah Basin in the western part of Aru Trough is included as a Paleozoic Basin which is one of the potential hydrocarbon-producing basins in Eastern Indonesia. Tectonic evolution in Akimeugah Basin during Cambrian to present has produced a very significant erosion that affected the hydrocarbon generation process. ‘ARD’ Block study uses three exploratory well data including well report and 26 lines of 2D seismic data with a total length of 5,812.55 kilometers and the distance between seismic lines ranging from 10 to 15 kilometers. Seismic data is processed with IHS Kingdom software for tectonostratigraphy analysis, while calculation and erosion analysis are performed by combining well data consisting of sonic, vitrinite reflectance and seismic. To get a burial history model and generation & expulsion period, this study utilizes Petromod software. Five phases of the tectonic evolution led to four times of erosional period with a sediment thickness of 290 – 3,370 feet were loss. The erosion of the sedimentary rocks causes the maturation process delayed more than 200 million years. Burial history in the study area with the erosion absence assumption results a hydrocarbon generation starting from around 210 million years ago. Meanwhile, by considering the loss of eroded sedimentary rocks during four tectonic phases, hydrocarbon generation time just occurred 3.1 million years ago.


2019 ◽  
Vol 56 (4) ◽  
pp. 365-396
Author(s):  
Debra Higley ◽  
Catherine Enomoto

Nine 1D burial history models were built across the Appalachian basin to reconstruct the burial, erosional, and thermal maturation histories of contained petroleum source rocks. Models were calibrated to measured downhole temperatures, and to vitrinite reflectance (% Ro) data for Devonian through Pennsylvanian source rocks. The highest levels of thermal maturity in petroleum source rocks are within and proximal to the Rome trough in the deep basin, which are also within the confluence of increased structural complexity and associated faulting, overpressured Devonian shales, and thick intervals of salt in the underlying Silurian Salina Group. Models incorporate minor erosion from 260 to 140 million years ago (Ma) that allows for extended burial and heating of underlying strata. Two modeled times of increased erosion, from 140 to 90 Ma and 23 to 5.3 Ma, are followed by lesser erosion from 5.3 Ma to Present. Absent strata are mainly Permian shales and sandstone; thickness of these removed layers increased from about 6200 ft (1890 m) west of the Rome trough to as much as 9650 ft (2940 m) within the trough. The onset of oil generation based on 0.6% Ro ranges from 387 to 306 Ma for the Utica Shale, and 359 to 282 Ma for Middle Devonian to basal Mississippian shales. The ~1.2% Ro onset of wet gas generation ranges from 360 to 281 Ma in the Utica Shale, and 298 to 150 Ma for Devonian to lowermost Mississippian shales.


1980 ◽  
Vol 57 (2) ◽  
pp. 525-533 ◽  
Author(s):  
S. A. Kerr ◽  
W. V. Prestwich ◽  
T. J. Kennett ◽  
D. M. Shaw

1962 ◽  
Vol 99 (1) ◽  
pp. 63-68 ◽  
Author(s):  
Philip F. Hutchins

AbstractPostdepositional low-temperature mineralogical changes in Carboniferous sedimentary rocks from Vestspitsbergen are described. These include the crystallization of apatite, quartz, and feldspar, and the replacement of feldspar and quartz by calcite and dolomite. Minerals of the chalcedonite–lutecime–quartzine group also occur.


Sign in / Sign up

Export Citation Format

Share Document