scholarly journals Non-destructive Three-dimensional Observation of Structure of Ice Grains in Frozen Food by X-ray Computed Tomography Using Synchrotron Radiation

2016 ◽  
Vol 17 (3) ◽  
pp. 83-88 ◽  
Author(s):  
Masugu SATO ◽  
Kentaro KAJIWARA ◽  
Norimichi SANO
2010 ◽  
Vol 163-167 ◽  
pp. 3061-3066 ◽  
Author(s):  
Jian De Han ◽  
Gang Hua Pan ◽  
Wei Sun ◽  
Cai Hui Wang ◽  
Hui Rong

X-ray computed tomography (XCT), a non-destructive test, was used to study three dimensional (3D) meso-defect volume distribution changes of cement paste due to carbonation. The 3D meso-defect volume from 0.02mm3 ~5mm3 before and after carbonation was analyzed through add-on modules of 3D defect analysis. The experimental results show that the meso-defect volume fraction before and after carbonation are 0.7685% and 2.44%, respectively. After carbonation, the smaller defect increased significantly than the bigger defect.


2021 ◽  
Author(s):  
Katherine A. Wolcott ◽  
Guillaume Chomicki ◽  
Yannick M. Staedler ◽  
Krystyna Wasylikowa ◽  
Mark Nesbitt ◽  
...  

Author(s):  
Theodore J. Heindel ◽  
Terrence C. Jensen ◽  
Joseph N. Gray

There are several methods available to visualize fluid flows when one has optical access. However, when optical access is limited to near the boundaries or not available at all, alternative visualization methods are required. This paper will describe flow visualization using an X-ray system that is capable of digital X-ray radiography, digital X-ray stereography, and digital X-ray computed tomography (CT). The unique X-ray flow visualization facility will be briefly described, and then flow visualization of various systems will be shown. Radiographs provide a two-dimensional density map of a three dimensional process or object. Radiographic images of various multiphase flows will be presented. When two X-ray sources and detectors simultaneously acquire images of the same process or object from different orientations, stereographic imaging can be completed; this type of imaging will be demonstrated by trickling water through packed columns and by absorbing water in a porous medium. Finally, local time-averaged phase distributions can be determined from X-ray computed tomography (CT) imaging, and this will be shown by comparing CT images from two different gas-liquid sparged columns.


Sign in / Sign up

Export Citation Format

Share Document