Star formation in extragalactic HII regions. Determination of parameters of the initial mass function

2001 ◽  
Vol 45 (1) ◽  
pp. 1-15 ◽  
Author(s):  
F. Kh. Sakhibov ◽  
M. A. Smirnov
1986 ◽  
Vol 116 ◽  
pp. 369-379 ◽  
Author(s):  
Paul Hodge

This paper begins with an attempt to examine the problem of identifying stellar associations in galaxies in a consistent way, so that meaningful physical comparisons can be made for the population of stellar associations of different galaxies. A compilation of the existing data on associations in other galaxies is given and their properties compared. Questions relating to star formation in stellar associations are discussed, and then the issue of the initial mass function of core clusters, especially those located in giant HII regions, is briefly examined.


1998 ◽  
Vol 508 (1) ◽  
pp. 347-369 ◽  
Author(s):  
K. L. Luhman ◽  
G. H. Rieke ◽  
C. J. Lada ◽  
E. A. Lada

2020 ◽  
Vol 494 (2) ◽  
pp. 2355-2373 ◽  
Author(s):  
M Palla ◽  
F Calura ◽  
F Matteucci ◽  
X L Fan ◽  
F Vincenzo ◽  
...  

ABSTRACT We study the effects of the integrated galactic initial mass function (IGIMF) and dust evolution on the abundance patterns of high redshift starburst galaxies. In our chemical models, the rapid collapse of gas clouds triggers an intense and rapid star formation episode, which lasts until the onset of a galactic wind, powered by the thermal energy injected by stellar winds and supernova explosions. Our models follow the evolution of several chemical elements (C, N, α-elements, and Fe) both in the gas and dust phases. We test different values of β, the slope of the embedded cluster mass function for the IGIMF, where lower β values imply a more top-heavy initial mass function (IMF). The computed abundances are compared to high-quality abundance measurements obtained in lensed galaxies and from composite spectra in large samples of star-forming galaxies in the redshift range 2 ≲ z ≲ 3. The adoption of the IGIMF causes a sensible increase of the rate of star formation with respect to a standard Salpeter IMF, with a strong impact on chemical evolution. We find that in order to reproduce the observed abundance patterns in these galaxies, either we need a very top-heavy IGIMF (β < 2) or large amounts of dust. In particular, if dust is important, the IGIMF should have β ≥ 2, which means an IMF slightly more top-heavy than the Salpeter one. The evolution of the dust mass with time for galaxies of different mass and IMF is also computed, highlighting that the dust amount increases with a top-heavier IGIMF.


2015 ◽  
Vol 12 (S316) ◽  
pp. 357-358
Author(s):  
Beomdu Lim ◽  
Hwankyung Sung ◽  
Hyeonoh Hur ◽  
Byeong-Gon Park

AbstractThe initial mass function (IMF) is an essential tool with which to study star formation processes. We have initiated the photometric survey of young open clusters in the Galaxy, from which the stellar IMFs are obtained in a homogeneous way. A total of 16 famous young open clusters have preferentially been studied up to now. These clusters have a wide range of surface densities (log σ = −1 to 3 [stars pc−2] for stars with mass larger than 5M⊙) and cluster masses (Mcl = 165 to 50, 000M⊙), and also are distributed in five different spiral arms in the Galaxy. It is possible to test the dependence of star formation processes on the global properties of individual clusters or environmental conditions. We present a preliminary result on the variation of the IMF in this paper.


Sign in / Sign up

Export Citation Format

Share Document