Nanoprecipitation resulting from the decomposition of supersaturated solid solutions in the tracks of swift heavy ions

2004 ◽  
Vol 49 (10) ◽  
pp. 1308-1312
Author(s):  
D. N. Korolev ◽  
A. E. Volkov
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Miguel C. Sequeira ◽  
Jean-Gabriel Mattei ◽  
Henrique Vazquez ◽  
Flyura Djurabekova ◽  
Kai Nordlund ◽  
...  

AbstractGaN is the most promising upgrade to the traditional Si-based radiation-hard technologies. However, the underlying mechanisms driving its resistance are unclear, especially for strongly ionising radiation. Here, we use swift heavy ions to show that a strong recrystallisation effect induced by the ions is the key mechanism behind the observed resistance. We use atomistic simulations to examine and predict the damage evolution. These show that the recrystallisation lowers the expected damage levels significantly and has strong implications when studying high fluences for which numerous overlaps occur. Moreover, the simulations reveal structures such as point and extended defects, density gradients and voids with excellent agreement between simulation and experiment. We expect that the developed modelling scheme will contribute to improving the design and test of future radiation-resistant GaN-based devices.


1981 ◽  
Vol 7 ◽  
Author(s):  
J. S. Williams ◽  
K. T. Short

ABSTRACTHigh resolution Rutherford backscattering and channeling techniques have been used to investigate the formation and stability of supersaturated solid solutions of As, Sb, In, Pb, Tℓ and Bi implants in (100) silicon. In all cases nearsubstitutional solid solubilities far exceeding maximum equilibrium solubility limits can be achieved by furnace annealing at temperatures ≤ 600°C. Details of the recrystallisation process indicate that the maximum impurity concentration which can be incorporated onto silicon lattice sites may be controlled by impurity size and associated strain effects at the amorphous-crystal boundary during epitaxial regrowth.


2016 ◽  
Vol 115 ◽  
pp. 02003
Author(s):  
Yvette Ngono-Ravache ◽  
Muriel Ferry ◽  
Stéphane Esnouf ◽  
Emmanuel Balanzat

Sign in / Sign up

Export Citation Format

Share Document