Methodology for simulation of the jet formation process in an elongated shaped charge

2014 ◽  
Vol 50 (3) ◽  
pp. 362-367 ◽  
Author(s):  
A. Wojewódka ◽  
T. Witkowski
2020 ◽  
Vol 1666 ◽  
pp. 012017
Author(s):  
E M Grif ◽  
A V Guskov ◽  
K E Milevskii

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhecheng Hu ◽  
Zhijun Wang ◽  
Jianping Yin ◽  
Jianya Yi

Shaped charges are widely used in the field of national defense because of their high energy density and strong directivity; however, one of their limitations is that the penetration diameter is small. Compared with a traditional shaped charge, an annular-shaped charge can create a larger penetration aperture at the target, thereby causing more damage to underwater targets. To enhance the damage effect of a shaped charge on an underwater structure, we designed an annular-shaped charge structure. To end this, we first established a velocity calculation model of the liner and analyzed its formation process. The hydrocode software Autodyn was used to simulate the jet formation process. Second, two parameters of the annular liner height and thickness of the bottom and their effect on the annular jet formation were analyzed. Finally, an experiment was conducted to validate the penetration capability of this charge. The experimental results indicate that the annular-shaped charge can penetrate a typical underwater structure and form a large penetration aperture with a diameter of 420 mm, which is 1.4 times the charge diameter. Furthermore, the numerical results show good agreement with the experimental data; only a 1.67% deviation was observed.


2014 ◽  
Vol 664 ◽  
pp. 128-137
Author(s):  
Kamal Guendouz ◽  
Ayoub Sayhi ◽  
Wang Cheng

In this work, the shaped charge jet formation depends on different parameters which can has effect on jet behavior such as jet velocity, breakup and penetration. Jet radius or liner thickness, shell thickness, liner material density, α angle and stand-off distance are evaluated in purpose to investigate their effect on performance of shaped charge jet velocity and jet breakup phenomena, also we investigate the effect of stand-off distance on shaped charge jet penetration into steel target. We also studied the performance of some protective shields materials in order to assure more protection for vehicle structure against shaped charge jet penetration. For that, different materials were used as armors such as: kevlar epoxy, polyethylene, glass epoxy, steel-1006 and Al2O3 ceramic. These protective shields were evaluated in order to show their performance against shaped charge penetration into target. To do so, adopted explicit dynamic analyzing program Autodyn basing on finite element were used to simulate shaped charge jet formation and penetration. Autodyn-2D simulationshighlight the efficiency of our work comparing with the experiments done in literature and Birkhoff’s theory. In other terms, increasing in shell thickness, alpha angle and liner densityenhance jet breakup time, protective shields layered armor of steel-1006, steel 1006 with polyethylene and steel-1006 with Al2O3ceramic give more protection for structure against shaped charge jet penetration comparing with others armors.


2020 ◽  
Author(s):  
Simon Thor ◽  
Anita Kullen ◽  
Tomas Karlsson ◽  
Savvas Raptis

<p>Magnetosheath jets are local enhancements of dynamic pressure above the background level. Hietala et al. (2018) recently presented observational evidence of a jet collision with the magnetopause causing magnetic field line reconnection. In the present study, we show data which, for the first time, strongly indicates that magnetosheath jets can even create localized transient reconnection events, so-called flux transfer events (FTEs).</p><p>FTEs are commonly observed in cascades with an average separation time of 8-10 minutes, but may also appear as isolated events. Despite the fact that FTEs have gained major attraction during recent years, the formation process of FTEs is not yet fully understood. We showed in a recent statistical study (Kullen, Thor, and Karlsson; 2019) that isolated FTEs and FTE cascades occur during different IMF conditions and are differently distributed along the magnetopause. The results of the statistical study strongly suggest that the majority of the FTEs formed along the expected reconnection region for each respective IMF condition. However, for a subset of isolated FTEs, we proposed a different formation process. These events may have been caused by magnetosheath jets, as they occur during IMF conditions favorable for jet formation. Simulation results by Karimabadi et al. (2014) has shown that such a creation mechanism is possible. In his simulation, a magnetosheath jet collides with the magnetopause, creating an FTE.</p><p>In the present investigation, FTEs that may have been caused by magnetosheath jets were identified. To achieve this, we examined measurements from all four Cluster satellites, and searched for magnetosheath jets that appear in close proximity to FTEs listed in Wang et al. (2005)’s FTE list. Our results show that approximately 15% of isolated FTEs appear in the vicinity of jets. These FTEs are further examined based on IMF and location across the magnetopause. For two of the FTEs, the associated jet appears close to the magnetopause. We present a detailed data analysis of these two events and discuss a possible formation mechanism for the FTEs, as there is strong evidence that the two FTEs are indeed caused by jets.</p>


Author(s):  
YUTING WANG ◽  
ZHENGXIANG HUANG ◽  
BIN MA ◽  
WENNI SHEN ◽  
QIANGQIANG XIAO

2008 ◽  
Vol 25 (1) ◽  
pp. 107-120 ◽  
Author(s):  
Cheng Wang ◽  
Fenglei Huang ◽  
Jianguo Ning

Sign in / Sign up

Export Citation Format

Share Document