Composition and characteristics of primary combustion products of boron-based propellants

2017 ◽  
Vol 53 (1) ◽  
pp. 55-64 ◽  
Author(s):  
J. Liu ◽  
D. Liang ◽  
J. Xiao ◽  
B. Chen ◽  
Ya. Zhang ◽  
...  
Author(s):  
Peihui Xu ◽  
Jianzhong Liu ◽  
Linqing Zhang ◽  
Jifei Yuan ◽  
Minggang Song ◽  
...  

2017 ◽  
Vol 33 (2) ◽  
pp. 333-337 ◽  
Author(s):  
Lin-lin Liu ◽  
Guo-Qiang He ◽  
Ying-Hong Wang ◽  
Song-Qi Hu ◽  
Yuan-Min Liu

1993 ◽  
Vol 1993 (1) ◽  
pp. 755-760
Author(s):  
David D. Evans ◽  
William D. Walton ◽  
Howard R. Baum ◽  
Kathy A. Notarianni ◽  
Edward J. Tennyson ◽  
...  

ABSTRACT Burning of spilled oil has distinct advantages over other cleanup countermeasures. It offers the potential to convert rapidly large quantities of oil into its primary combustion products, carbon dioxide and water, with a small percentage of other unburned and residue byproducts. Disadvantages include the dispersal of the combustion products into the air. Mesoscale and laboratory experiments have been conducted to measure the burning characteristics of crude oil fires. Measurements on crude oil pool fires from 0.4 m to 17.2 m in effective diameter were made to obtain data on the rate of burning, heat release rate, composition of the combustion products, and downwind dispersion of the products. The smaller experiments were performed in laboratories at the National Institute of Standards and Technology and the Fire Research Institute in Japan; and the larger ones at the U. S. Coast Guard Fire Safety and Test Detachment in Mobile, Alabama. From these experiments, the value for surface regression rate of a burning crude oil spill was found to be 0.055 mm/s. A major concern for public safety is the content and extent of the smoke plume from the fires. Smoke yield, the fraction of the oil mass burned that is emitted as particulate, was found to be 13 percent. A large-eddy simulation calculation method for smoke plume trajectory and smoke particulate deposition developed by NIST showed that the smoke particulate deposition from a 114 m2 burn would occur in striations over a long, slender area 3.2 km wide and 258 km downwind of the burn.


Author(s):  
G. A. Richards ◽  
K. H. Casleton ◽  
B. T. Chorpening

Concerns about climate change have encouraged significant interest in concepts for zero-emission power generation systems. These systems are intended to produce power without releasing CO2 into the atmosphere. One method to achieve this goal is to produce hydrogen from the gasification of fossil or biomass fuels. Using various membrane and reforming technologies, the carbon in the parent fuel can be shifted to CO2 and removed from the fuel stream, followed by direct CO2 sequestration. The hydrogen fuel can be used directly in gas turbines fitted with low-NO x combustors. A second approach to producing zero-emission power is to replace the nitrogen diluent that accompanies conventional combustion in air with either CO2 or H2O. In this concept, CO2 or H2O is added to oxygen to control combustion temperatures in oxygen-fuel reactions. In the absence of nitrogen, the primary combustion products for any hydrocarbon under lean conditions are then simply CO2 and H2O. Thus, merely cooling the exhaust stream condenses the water and produces an exhaust of pure CO2, ready for sequestration. The dilute oxy-fuel combustion strategy can be incorporated in power cycles that are similar to Brayton or Rankine configurations, using CO2 or H2O as the primary diluent respectively. While the relative merits of the various strategies to zero-emission power are the subject of various technical and economic studies, very little work has focused on defining the combustion issues associated with the dilute oxy-fuel option. In this paper, the expected combustion performance of CO2 and H2O diluted systems are compared. Experimental results from a high-pressure oxy-fuel combustor are also presented.


Author(s):  
Arman Ahamed Subash ◽  
Robert Collin ◽  
Marcus Aldén ◽  
Atanu Kundu ◽  
Jens Klingmann

Experiments were performed at atmospheric pressure conditions on the prototype 4th generation DLE burner. The combustion changes that occur for alteration of the operating conditions by changing the equivalence ratios (ϕ) for CH4 as fuel at different sections of the burner, were optically investigated. The burner assembly has three concentrically arranged premixed burner sections: an outer Main section, an intermediate section (Pilot) and a central pilot body or pre-chamber combustor, called RPL (Rich-Pilot-Lean) section. All sections are facilitated to vary equivalence ratios to achieve optimal combustion. Planar laser-induced fluorescence (PLIF) of OH radicals and flame chemiluminescence imaging were applied to study the local flame characteristics in order to investigate turbulence-flame interaction and formation of reaction zone at the burner exit. The results show that the position and shape of the flame are clearly affected by the variation of equivalence ratios at different sections of the burner. During the experiments, first the RPL, then the Pilot and the Main flame were added in a step wise manner keeping constant the total air flow for the global ϕ = 0.5 in order to understand the flame contributions from the different combustion sections. It is observed that for the RPL fuel lean conditions, the primary combustion starts and reaches completion before exiting the burner throat while for rich conditions, the residual fuel escapes out through the RPL exit with primary combustion products and starts secondary combustion along with the Pilot and Main combustion. At the global ϕ = 0.5, for changing the RPL ϕ from lean to rich conditions, the flame stabilization region moves downstream of the burner exit and the flame front fluctuation along inner shear layer increases. For increasing the global ϕ and increasing the Pilot fuel ratio (PFR) without changing the RPL and the global ϕ, the total extension of the flame becomes shorter and the flame stabilization region moves upstream.


2015 ◽  
Vol 112 ◽  
pp. 182-191 ◽  
Author(s):  
Daolun Liang ◽  
Jianzhong Liu ◽  
Jinwu Xiao ◽  
Jianfei Xi ◽  
Yang Wang ◽  
...  

Author(s):  
Arman Ahamed Subash ◽  
Ronald Whiddon ◽  
Robert Collin ◽  
Marcus Aldén ◽  
Atanu Kundu ◽  
...  

Experiments were performed on the central pilot body (RPL-rich-pilot-lean) of Siemens prototype 4th generation DLE burner to investigate the flame behavior at atmospheric pressure condition when varying equivalence ratio, residence time and co-flow temperature. The flame at the RPL burner exit was investigated applying OH planar laser-induced fluorescence (PLIF) and high-speed chemiluminescence imaging. The results from chemiluminescence imaging and OH PLIF show that the size and shape of the flame are clearly affected by the variation in operating conditions. For both preheated and non-preheated co-flow cases, at lean equivalence ratios combustion starts early inside the burner and primary combustion comes to near completion inside the burner if residence time permits. For rich conditions, the unburnt fuel escapes out through the burner exit along with primary combustion products and combustion subsequently restarts downstream the burner at leaner condition and in a diffuse-like manner. For preheated co-flow, most of the operating conditions yield similar OH PLIF distributions and the flame is stabilizing at approximately the same spatial positions. It reveals the importance of the preheating co-flow for flame stabilization. Flame instabilities were observed and Proper Orthogonal Decomposition (POD) is applied to time resolved chemiluminescence data to demonstrate how the flame is oscillating. Preheating has strong influence on the oscillation frequency. Additionally, combustion emissions were analyzed to observe the effect on NOX level for variation in operating conditions.


Sign in / Sign up

Export Citation Format

Share Document