metal additives
Recently Published Documents


TOTAL DOCUMENTS

164
(FIVE YEARS 36)

H-INDEX

28
(FIVE YEARS 3)

Author(s):  
Izham Izzat Ismail ◽  
Norhuda Hidayah Nordin ◽  
Muhammad Hanafi Azami ◽  
Nur Azam Abdullah

A rocket's engine usually uses fuel and oxygen as propellants to increase the rocket's projection during launch. Nowadays, metallic ingredients are commonly used in the rocket’s operation to increase its performance. Metallic ingredients have a high energy density, flame temperature, and regression rate that are important factors in the propulsion process. There is a wide range of additives have been reported so far as catalysts for rocket propulsion. The studies show that the presence of metal additives improves the regression rate, specific impulse and combustion efficiency. Herein, the common energetic additives for rocket propulsion such as metal and light metals are reviewed. Besides the effect of these energetic particles on the regression behaviors of base (hybrid) fuel has been exclusively discussed. This paper also proposed a new alloy namely high entropy alloys (HEAs) as a new energetic additive that can potentially increase the performance of the rocket propellant system.


Author(s):  
Светлана Александровна Бибанаева ◽  
Владимир Михайлович Скачков

Работа посвящена изучению влияния моно- и сложносоставных металлических добавок на процесс переработки бокситов гидрощелочным способом. Изучен химический качественный и количественный состав, морфология красных шламов (КШ) полученных в условиях автоклавного высокотемпературного выщелачивания. Проведены рентгенофазовые исследования, направленные на определение состава и структуры соединений в красном шламе. Показана перспективность метода автоклавного выщелачивания трудновскрываемых бокситов с одновременным извлечением глинозема и конверсии гематита в магнетит газообразным водородом. Установлено, что способ позволяет переработку бокситов с высокой степенью извлечения глинозема и позволяет получать красные шламы с различным содержанием магнитной фракции и низким содержанием натрия. Полученный магнетизированный красный шлам пригоден для переработки с помощью магнитной сепарации и делает перспективным сырьем для черной металлургии. Определена зависимость степени конверсии гематита в магнетит от вида восстанавливающего агента. По результатам исследований был получен патент на изобретение. The work is devoted to the study of the influence of mono - and composite metal additives on the process of processing bauxite by the hydro-alkaline method. The chemical qualitative and quantitative composition, morphology of red mud (RM) obtained under conditions of autoclave high-temperature leaching were studied. X-ray phase studies aimed at determining the composition and structure of compounds in red mud were carried out. The prospects of the method of autoclave leaching of hard-to-open bauxites with simultaneous extraction of alumina and conversion of hematite to magnetite by hydrogen gas are shown. It was found that the method allows the processing of bauxite with a high degree of alumina extraction and allows to obtain red mud with different magnetic fraction content and low sodium content. The resulting magnetized red mud is suitable for processing by magnetic separation and makes it a promising raw material for the ferrous metallurgy. The dependence of the degree of conversion of hematite to magnetite on the type of reducing agent is determined. According to the results of the research, a patent for the invention was obtained.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3231
Author(s):  
Hesham Alhumade ◽  
Ahmed Askalany ◽  
Hegazy Rezk ◽  
Abdulrahim A. Al-Zahrani ◽  
Sharif F. Zaman

In this paper, improving the overall heat transfer coefficient by adding aluminum species to silica gel has been studied theoretically. An adsorption desalination system is proposed, and a lumped theoretical model conducted to investigate employing the metal additives within the adsorbent bed with and without a heat recovery between condenser and evaporator. A 30% of the total mass of the adsorbent bed contents was considered to be replaced by aluminum species. According to this, the overall heat transfer coefficient has been increased by 260%, which shows a good impact on the performance of the adsorption system. Daily water productivity was increased by 70% at the worst-case, reaching up to 17 m3/day/ton of silica gel without heat recovery. By employing heat recovery with the metal filing, the daily water productivity reached 42 m3/day/ton of silica gel which is four times the productivity of the classic silica gel-based adsorption desalination system.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7226
Author(s):  
Karol Sztekler ◽  
Wojciech Kalawa ◽  
Łukasz Mika ◽  
Marcin Sowa

Adsorption chillers with desalination functionality, being devices characterised by very low electricity consumption, provide an alternative to conventional sources of cooling and water. The option of desalinating water means that the use of a single device enables obtaining two useful products. Adsorption chillers are not widely used at present. due to their low performance characteristics; these are, however, constantly being improved. This paper presents a verification of the possibility of increasing the cooling coefficient of performance (COP) and specific cooling power (SCP) of a laboratory adsorption chiller by optimising the length of cycle times and using a copper additive to silica gel with a mass fraction of 15% to increase heat transport in the bed. The choice of copper among other considered additives was determined by the conclusions from the research on the sorption kinetics of various mixtures, price and availability, and a high thermal conductivity. The device was operated in a two-bed mode aimed at producing cooling. The adsorbate was distilled water. The results were compared with those obtained under similar conditions when the beds were only filled with silica gel. As a result of the testing, it was found that the use of the copper additive with the sorbent increased both the COP and SCP. The tests were performed for different cycle times, of 100, 200, 300 and 600 s. With increasing cycle time COP also increased. In contrast, the specific cooling power increased only up to a certain point, whereafter its value decreased.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5921
Author(s):  
Pascal M. Gschwend ◽  
Florian M. Schenk ◽  
Alexander Gogos ◽  
Sotiris E. Pratsinis

Noble metal additives are widely used to improve the performance of metal oxide gas sensors, most prominently with palladium on tin oxide. Here, we photodeposit different quantities of Pd (0–3 mol%) onto nanostructured SnO2 and determine their effect on sensing acetone, a critical tracer of lipolysis by breath analysis. We focus on understanding the effect of operating temperature on acetone sensing performance (sensitivity and response/recovery times) and its relationship to catalytic oxidation of acetone through a packed bed of such Pd-loaded SnO2. The addition of Pd can either boost or deteriorate the sensing performance, depending on its loading and operating temperature. The sensor performance is optimal at Pd loadings of less than 0.2 mol% and operating temperatures of 200–262.5 °C, where acetone conversion is around 50%.


Synthesis ◽  
2021 ◽  
Author(s):  
Dirk De Vos ◽  
Igor Beckers ◽  
Galahad O’Rourke

AbstractThe C–H arylation of indoles holds the promise to shorten synthetic routes in the production of pharmaceuticals. However, late-stage C–H activation reactions often rely on the presence of protecting groups or stoichiometric metal additives. The regiospecific C–H arylation of a highly functionalized azepino[5,3,4-cd]indole scaffold lacking directing groups via Pd(II) and Cu(II) co-catalysis is reported. The direct C–H coupling was demonstrated in the convergent synthesis of rucaparib, an FDA approved anticancer drug.


2021 ◽  
Vol 85 (7) ◽  
pp. 765-770
Author(s):  
P. A. Borisova ◽  
M. S. Blanter ◽  
V. V. Brazhkin ◽  
S. G. Lyapin ◽  
V. P. Filonenko ◽  
...  

Chemosphere ◽  
2021 ◽  
pp. 131274
Author(s):  
Jun Meng ◽  
Baile Xu ◽  
Fei Liu ◽  
Wenjin Li ◽  
Nathan Sy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document