Equation of State of Gas Detonation Products. Allowance for the Formation of the Condensed Phase of Carbon

2021 ◽  
Vol 57 (5) ◽  
pp. 576-587
Author(s):  
E. R. Pruuel ◽  
A. A. Vasil’ev
2022 ◽  
Vol 16 (2) ◽  
pp. 59-70
Author(s):  
E. S. Prokhorov

A mathematical model of gas detonation of fuel-enriched mixtures of hydrocarbons with oxygen has been formulated, which makes it possible to numerically study the equilibrium flows of detonation products in the presence of free carbon condensation. Reference data for graphite were used to describe the thermodynamic properties of carbon condensate. The calculations are compared with the known results of experimental studies in which, when detonating an acetylene-oxygen mixture in a pipe closed at one end, it is possible to obtain nanoscale particles from a carbon material with special properties. It is assumed that the melting point of such a material is lower than that of graphite and is about 3100 K. Only with such an adjustment of the melting temperature, the best agreement (with an accuracy of about 3 %) was obtained between the calculated and experimental dependence of the detonation front velocity on the molar fraction of acetylene in the mixture.


Author(s):  
Prabal Adhikari ◽  
Jens O. Andersen ◽  
Patrick Kneschke

Abstract In this paper, we calculate the equation of state of two-flavor finite isospin chiral perturbation theory at next-to-leading order in the pion-condensed phase at zero temperature. We show that the transition from the vacuum phase to a Bose-condensed phase is of second order. While the tree-level result has been known for some time, surprisingly quantum effects have not yet been incorporated into the equation of state.  We find that the corrections to the quantities we compute, namely the isospin density, pressure, and equation of state, increase with increasing isospin chemical potential. We compare our results to recent lattice simulations of 2 + 1 flavor QCD with physical quark masses. The agreement with the lattice results is generally good and improves somewhat as we go from leading order to next-to-leading order in $$\chi $$χPT.


2005 ◽  
Vol 98 (5) ◽  
pp. 053514 ◽  
Author(s):  
B. L. Wescott ◽  
D. Scott Stewart ◽  
W. C. Davis

2013 ◽  
Vol 790 ◽  
pp. 61-64
Author(s):  
Yan Hong Zhao ◽  
Hai Feng Liu ◽  
Wei Wei Pang

An equation of state (EOS) model of detonation products based on chemical equilibrium is developed. The EOS of gaseous detonation products is described by Rosss modification of hard-sphere variation theory and the improved one-fluid van der Waals mixture model. The condensed phases of carbon are taken as a mixture of graphite, diamond, graphite-like liquid and diamond-like liquid. For a mixed system of detonation products, the free energy minimization principle is used to determine the equilibrium compositions of detonation products by solving chemical equilibrium equations. The potential function parameters have been renewed and the non-ideal fixing effects of the major detonation products have been taken into account. The calculated detonation parameters in our work for a variety of explosives are well in agreement with the experimental data.


1981 ◽  
Vol 74 (8) ◽  
pp. 4634-4642 ◽  
Author(s):  
R. Chirat ◽  
G. Pittion‐Rossillon

Sign in / Sign up

Export Citation Format

Share Document