Observation of Disturbed Plasma Structures in the Environment of the Sun and Near-Earth Space with Radio Sounding and Local Measurements

2020 ◽  
Vol 58 (6) ◽  
pp. 460-467
Author(s):  
A. I. Efimov ◽  
L. A. Lukanina ◽  
I. V. Chashei ◽  
S. F. Kolomiets ◽  
M. K. Bird ◽  
...  
2018 ◽  
Vol 27 (1) ◽  
pp. 132-138
Author(s):  
Andrey Shugarov ◽  
Boris Shustov ◽  
Sergey Naroenkov

Abstract Chelyabinsk event of Feb 15, 2013 clearly demonstrated that decameter sizeNear EarthObjects (NEO) should be considered as hazardous ones. Another important lesson is that bodies approaching the Earth from day sky could not be discovered by any ground-based or near Earth space telescopes and the only way to detect these bodies reasonably well beforehand is to put the telescope(s) relatively far fromthe Earth.We proposed the project of space system SODA (System of Observation of Day-time Asteroids) for exhaustive detection of decameter (and larger) bodies approaching the Earth from the Sun direction (Chelyabinsk type meteoroids). The medium-size (30 cm) wide field telescopes are to be put into vicinity of L1 (Earth-Sun) point. Observations will be performed in barrier mode. Two options are considered: single spacecraft (SC) or pair of SCs. We describe major constituents and options of the project. The entire project could be implemented with off-shelf components and fits to low-cost project requirements. Special attention is paid to accuracy of orbit of the NEO. In a variant of two SCs capable to perform observation in triangulation mode accuracy of atmosphere entry point for Chelyabinsk-like body could be as high as few tens of kilometers.


Solar-terrestrial physics is concerned with the near-Earth space environment, that is with the solar wind, magnetosphere, ionosphere and thermosphere. It deals with this region, now often termed geospace, in both its ideal, steady-state situation and its transient response to dramatic events occurring on the Sun or in the interplanetary medium.


2004 ◽  
Vol 10 (2-3) ◽  
pp. 16-21
Author(s):  
O.F. Tyrnov ◽  
◽  
Yu.P. Fedorenko ◽  
L.F. Chernogor ◽  
◽  
...  

2006 ◽  
Vol 2 (S236) ◽  
pp. 43-54 ◽  
Author(s):  
Olga A. Mazeeva

AbstractThe dynamical evolution of 2⋅105 hypothetical Oort cloud comets by the action of planetary, galactic and stellar perturbations during 2⋅109 years is studied numerically. The evolution of comet orbits from the outer (104 AU <a<5⋅104 AU, a is semimajor axes) and the inner Oort cloud (5⋅103 AU <a<104 AU) to near-Earth space is investigated separately. The distribution of the perihelion (q) passage frequency in the planetary region is obtained calculating the numbers of comets in every interval of Δ q per year. The flux of long-period (LP) comets (orbital periods P>200 yr) with perihelion distances q<1.5 AU brighter than visual absolute magnitude H10=7 is ∼ 1.5 comets per year, and ∼18 comets with H10<10.9. The ratio of all LP comets with q<1.5 AU to ‘new’ comets is ∼5. The frequency of passages of LP comets from the inner Oort cloud through region q<1.5 AU is ∼3.5⋅10−13 yr−1, that is roughly one order of magnitude less than frequency of passages of LP comets from the outer cloud (∼5.28⋅10−12 yr−1). We show that the flux of ‘new’ comets with 15<q<31 AU is higher than with q<15 AU, by a factor ∼1.7 for comets from the outer Oort cloud and, by a factor ∼7 for comets from the inner cloud. The perihelia of comets from the outer cloud previously passed through the planetary region are predominated in the Saturn-Uranus region. The majority of inner cloud comets come in the outer solar system (q>15 AU), and a small fraction (∼0.01) of them can reach orbits with q<1.5 AU. The frequency of transfer of comets from the inner cloud (a<104 AU) to the outer Oort cloud (a>104 AU), from where they are injected to the region q<1.5 AU, is ∼6⋅10−14 yr−1.


1993 ◽  
Vol 13 (8) ◽  
pp. 133-136 ◽  
Author(s):  
A.J. Tuzzolino ◽  
J.A. Simpson ◽  
R.B. McKibben ◽  
H.D. Voss ◽  
H. Gursky

Sign in / Sign up

Export Citation Format

Share Document