space telescopes
Recently Published Documents


TOTAL DOCUMENTS

403
(FIVE YEARS 89)

H-INDEX

15
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Erika T. Bannon ◽  
Kevin Weed ◽  
J. Scott Knight ◽  
Laura Coyle ◽  
John Harvey ◽  
...  

2022 ◽  
Author(s):  
Erika T. Bannon ◽  
Kevin Weed ◽  
J. Scott Knight ◽  
Laura Coyle ◽  
Sarah Grunsfeld

2021 ◽  
Vol 163 (1) ◽  
pp. 27
Author(s):  
Jiazheng Li ◽  
Jonathan H. Jiang ◽  
Huanzhou Yang ◽  
Dorian S. Abbot ◽  
Renyu Hu ◽  
...  

Abstract A terrestrial planet’s rotation period is one of the key parameters that determines its climate and habitability. Current methods for detecting the rotation period of exoplanets are not suitable for terrestrial exoplanets. Here we demonstrate that, under certain conditions, the rotation period of an Earth-like exoplanet will be detectable using direct-imaging techniques. We use a global climate model that includes clouds to simulate reflected starlight from an Earth-like exoplanet and explore how different parameters (e.g., orbital geometry, wavelength, time resolution) influence the detectability of the planet’s rotation period. We show that the rotation period of an Earth-like exoplanet is detectable using visible-wavelength channels with time-series monitoring at a signal-to-noise ratio (S/N) >20 with ∼5–15 rotation periods of data, while the rotation period of a planet with full ocean coverage is unlikely to be detectable. To better detect the rotation period, one needs to plan the observation so that each individual integration would yield a S/N >10, while keeping the integration time shorter than 1/6 to 1/4 of the rotation period of the planet. Our results provide important guidance for rotation period detection of Earth-like exoplanets in reflected light using future space telescopes.


2021 ◽  
Vol 257 (2) ◽  
pp. 63
Author(s):  
Wenbo Zuo ◽  
Aigen Li ◽  
Gang Zhao

Abstract While it is well recognized that both the Galactic interstellar extinction curves and the gas-phase abundances of dust-forming elements exhibit considerable variations from one sight line to another, as yet most of the dust extinction modeling efforts have been directed to the Galactic average extinction curve, which is obtained by averaging over many clouds of different gas and dust properties. Therefore, any details concerning the relationship between the dust properties and the interstellar environments are lost. Here we utilize the wealth of extinction and elemental abundance data obtained by space telescopes and explore the dust properties of a large number of individual sight lines. We model the observed extinction curve of each sight line and derive the abundances of the major dust-forming elements (i.e., C, O, Si, Mg, and Fe) required to be tied up in dust (i.e., dust depletion). We then confront the derived dust depletions with the observed gas-phase abundances of these elements and investigate the environmental effects on the dust properties and elemental depletions. It is found that for the majority of the sight lines the interstellar oxygen atoms are fully accommodated by gas and dust and therefore there does not appear to be a “missing oxygen” problem. For those sight lines with an extinction-to-hydrogen column density A V /N H ≳ 4.8 × 10−22 mag cm2 H−1 there are shortages of C, Si, Mg, and Fe elements for making dust to account for the observed extinction, even if the interstellar C/H, Si/H, Mg/H, and Fe/H abundances are assumed to be protosolar abundances augmented by Galactic chemical evolution.


2021 ◽  
Vol 257 (2) ◽  
pp. 53
Author(s):  
Mikkel N. Lund ◽  
Rasmus Handberg ◽  
Derek L. Buzasi ◽  
Lindsey Carboneau ◽  
Oliver J. Hall ◽  
...  

Abstract Data from the Transiting Exoplanet Survey Satellite (TESS) have produced of the order of one million light curves at cadences of 120 s and especially 1800 s for every ∼27 day observing sector during its two-year nominal mission. These data constitute a treasure trove for the study of stellar variability and exoplanets. However, to fully utilize the data in such studies a proper removal of systematic-noise sources must be performed before any analysis. The TESS Data for Asteroseismology group is tasked with providing analysis-ready data for the TESS Asteroseismic Science Consortium, which covers the full spectrum of stellar variability types, including stellar oscillations and pulsations, spanning a wide range of variability timescales and amplitudes. We present here the two current implementations for co-trending of raw photometric light curves from TESS, which cover different regimes of variability to serve the entire seismic community. We find performance in terms of commonly used noise statistics meets expectations and is applicable to a wide range of intrinsic variability types. Further, we find that the correction of light curves from a full sector of data can be completed well within a few days, meaning that when running in steady state our routines are able to process one sector before data from the next arrives. Our pipeline is open-source and all processed data will be made available on the websites of the TESS Asteroseismic Science Operations Center and the Mikulski Archive for Space Telescopes.


2021 ◽  
Vol 922 (2) ◽  
pp. 217
Author(s):  
Najmeh Emami ◽  
Brian Siana ◽  
Kareem El-Badry ◽  
David Cook ◽  
Xiangcheng Ma ◽  
...  

Abstract Stellar feedback in dwarf galaxies plays a critical role in regulating star formation via galaxy-scale winds. Recent hydrodynamical zoom-in simulations of dwarf galaxies predict that the periodic outward flow of gas can change the gravitational potential sufficiently to cause radial migration of stars. To test the effect of bursty star formation on stellar migration, we examine star formation observables and sizes of 86 local dwarf galaxies. We find a correlation between the R-band half-light radius (R e ) and far-UV luminosity (L FUV) for stellar masses below 108 M ⊙ and a weak correlation between the R e and Hα luminosity (L Hα ). We produce mock observations of eight low-mass galaxies from the FIRE-2 cosmological simulations and measure the similarity of the time sequences of R e and a number of star formation indicators with different timescales. Major episodes of R e time sequence align very well with the major episodes of star formation, with a delay of ∼50 Myr. This correlation decreases toward star formation rate indicators of shorter timescales such that R e is weakly correlated with L FUV (10–100 Myr timescale) and is completely uncorrelated with L Hα (a few Myr timescale), in agreement with the observations. Our findings based on FIRE-2 suggest that the R-band size of a galaxy reacts to star formation variations on a ∼50 Myr timescale. With the advent of a new generation of large space telescopes (e.g., JWST), this effect can be examined explicitly in galaxies at higher redshifts, where bursty star formation is more prominent.


Author(s):  
Erika Bannon ◽  
Kevin Weed ◽  
J. Scott Knight ◽  
Laura Coyle ◽  
Megan DeMott
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document