Variational method for proving the existence of a nonlocal solution of a boundary value problem for a quasilinear partial differential equation

2011 ◽  
Vol 47 (6) ◽  
pp. 841-847
Author(s):  
S. N. Timergaliev ◽  
I. R. Mavleev
Filomat ◽  
2018 ◽  
Vol 32 (3) ◽  
pp. 801-808 ◽  
Author(s):  
Kh. Belakroum ◽  
A. Ashyralyev ◽  
A. Guezane-Lakoud

The nonlocal boundary-value problem for a third order partial differential equation in a Hilbert space with a self-adjoint positive definite operator is considered. Applying operator approach, the theorem on stability for solution of this nonlocal boundary value problem is established. In applications, the stability estimates for the solution of three nonlocal boundary value problems for third order partial differential equations are obtained.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Yin-shan Yun ◽  
Ying Wen ◽  
Temuer Chaolu ◽  
Randolph Rach

Abstract For the boundary value problem (BVP) of a second-order partial differential equation on a plane triangle area, we propose a new algorithm based on the Adomian decomposition method (ADM) combined with a segmented technique. In addition, we present a new theorem that ensures the convergence of the algorithm. By this algorithm, the model for the effect of regional recharge on the plane triangle groundwater flow region is solved, from which we obtain the segmented exact solution of the problem, which satisfies the governing equation and all of the specified boundary conditions. Then, by the algorithm combined with Taylor’s formula, the heterogeneous aquifer model on the plane triangle groundwater flow region is considered, from which we obtain the segmented high-precision approximate solution of the problem.


2019 ◽  
Vol 9 (1) ◽  
pp. 438-448 ◽  
Author(s):  
Yichen Liu ◽  
Monica Marras ◽  
Giovanni Porru

Abstract First we prove a comparison result for a nonlinear divergence structure elliptic partial differential equation. Next we find an estimate of the solution of a boundary value problem in a domain Ω in terms of the solution of a related symmetric boundary value problem in a ball B having the same measure as Ω. For p-Laplace equations, the corresponding result is due to Giorgio Talenti. In a special (radial) case we also prove a reverse comparison result.


1972 ◽  
Vol 15 (2) ◽  
pp. 229-234
Author(s):  
Julius A. Krantzberg

We consider the initial-boundary value problem for the parabolic partial differential equation1.1in the bounded domain D, contained in the upper half of the xy-plane, where a part of the x-axis lies on the boundary B(see Fig.1).


Sign in / Sign up

Export Citation Format

Share Document