The Ability of Ixodid Ticks (Acari: Ixodidae) to Support Reproduction of the Tick-Borne Encephalitis Virus

2018 ◽  
Vol 98 (9) ◽  
pp. 1369-1378 ◽  
Author(s):  
O. A. Belova ◽  
I. S. Kholodilov ◽  
A. G. Litov ◽  
G. G. Karganova
2016 ◽  
Vol 16 (8) ◽  
pp. 541-549 ◽  
Author(s):  
Valentina N. Bakhvalova ◽  
Galina S. Chicherina ◽  
Olga F. Potapova ◽  
Victor V. Panov ◽  
Victor V. Glupov ◽  
...  

2017 ◽  
Vol 8 (6) ◽  
pp. 895-906 ◽  
Author(s):  
Oxana A. Belova ◽  
Alexander G. Litov ◽  
Ivan S. Kholodilov ◽  
Liubov I. Kozlovskaya ◽  
Lesley Bell-Sakyi ◽  
...  

2009 ◽  
Vol 90 (8) ◽  
pp. 1781-1794 ◽  
Author(s):  
K. L. Mansfield ◽  
N. Johnson ◽  
L. P. Phipps ◽  
J. R. Stephenson ◽  
A. R. Fooks ◽  
...  

During the last 30 years, there has been a continued increase in human cases of tick-borne encephalitis (TBE) in Europe, a disease caused by tick-borne encephalitis virus (TBEV). TBEV is endemic in an area ranging from northern China and Japan, through far-eastern Russia to Europe, and is maintained in cycles involving Ixodid ticks (Ixodes ricinus and Ixodes persulcatus) and wild vertebrate hosts. The virus causes a potentially fatal neurological infection, with thousands of cases reported annually throughout Europe. TBE has a significant mortality rate depending upon the strain of virus or may cause long-term neurological/neuropsychiatric sequelae in people affected. In this review, we comprehensively reviewed TBEV, its epidemiology and pathogenesis, the clinical manifestations of TBE, along with vaccination and prevention. We also discuss the factors which may have influenced an apparent increase in the number of reported human cases each year, despite the availability of effective vaccines.


2019 ◽  
Vol 10 (5) ◽  
pp. 959-969 ◽  
Author(s):  
Ivan Kholodilov ◽  
Oxana Belova ◽  
Ludmila Burenkova ◽  
Yuri Korotkov ◽  
Lidiya Romanova ◽  
...  

2015 ◽  
Vol 20 (1) ◽  
pp. 20-26
Author(s):  
G. S Chicherina ◽  
O. V Morozova ◽  
V. V Panov ◽  
V. N Romanenko ◽  
S. A Bakhvalov ◽  
...  

With the use of the ELISA method to detect an antigen, reverse transcription with quantitative real-time PCR with subtype-specific fluorescent probes, phylogenetic analysis of E and NS1 gene nucleotide sequences, bioassays with suckling mice, hemagglutination and neuroinvasiveness tests there was made a comparison of the tick-borne encephalitis virus (TBEV) infection of ixodid ticks Ixodes persulcatus P.Schulze and Ixodes pavlovskyi Pomerantsev 1946 in the area of sympatria of their natural habitats in the Novosibirsk region during growth period of their populations with the replacement ofprevailing species of monodominant type of the ixodid population structure. The ratio of 2 tick species didn’t depend on biotopes ofpine or birch forest but rather on the distance from the Novosibirsk Scientific Center: the lower anthropogenic pressure the smaller I.pavlovskyi proportion. The TBEV rate (including both pathogenic and apathogenic for laboratory mice virus), spectra of the TBEV3 main genetic types, neurovirulence and hemagglutination activity were similarfor both I.persulcatus and I.pavlovskyi. However, the proportion ofpathogenic for laboratory mice virus and the TBEV Far Eastern subtype, as well as viral loads of Siberian and European types for the TBEV from I.pavlovskyi were significantly higher than those from I.persulcatus.


2021 ◽  
Vol 66 (4) ◽  
pp. 310-321
Author(s):  
O. V. Mel’nikova ◽  
R. V. Adel’shin ◽  
K. V. Lopatovskaya ◽  
Yu. T. Trushina ◽  
N. V. Yakovchits ◽  
...  

Introduction. Tick-borne encephalitis virus (TBEV) is medically most important representative of the same-name serogroup of genus Flavivirus (Flaviviridae). In the view of various researchers there are 3 to 5 TBEV subtypes, of them siberian being the most prevalent. The aim of the work is to compare the biological properties and to reveal phylogenetic relationships of large group of modern (2006–2019) TBEV isolates of siberian subtype from natural foci in southern East Siberia.Material and methods. Ixodid ticks (Ixodidae) and small mammals (Mammalia) from tick-borne encephalitis (TBE) natural foci in Irkutsk Region, Republic of Buryatia and Republic of Tuva, as well as specimens from TBE patients, were examined for TBEV markers using enzyme-linked immunosorbent assay (ELISA) and reverse transcription polymerase chain reaction (RT-PCR). Virus was isolated from suspensions with positive result, and its pathogenicity for white mice (Mus) (WM) was studied by different inoculation ways. Analysis of the nucleotide sequences of E gene was performed for isolates at 1st passage. Phylogenetic tree was constructed using MEGA X program.Results. The phylogenetic analysis has shown that TBEV of siberian subtype that circulates in natural foci of the studied territory belong to two genetic lines. These lines are «Vasilchenko» and «Zausaev» with a strong predominance of the first. The differences in biological properties between the two groups of strains have been demonstrated. Most of the strains from both groups showed high virulence for WM both after intracerebral and subcutaneous inoculation. Only four strains demonstrated the reduced ability to overcome the blood-brain barrier. However, the analysis of the E protein coding sequences revealed evident correlation between phylogenetic clustering and geographical origin of isolates, but not with TBE host or pathogenicity for WM.Conclusion. Further search for TBE genome regions associated with pathogenicity require the analysis of complete genome sequences of representative group of strains with different biological properties.


Sign in / Sign up

Export Citation Format

Share Document